
A Parameterized Graph Transformation Calculus for Finite
Graphs with Monadic Branches

Kazuyuki Asada
The University of Tokyo

Soichiro Hidaka
National Institute of

Informatics

Hiroyuki Kato
National Institute of

Informatics

Zhenjiang Hu
National Institute of

Informatics

Keisuke Nakano
The University of

Electro-Communications

ABSTRACT
We introduce a lambda calculusλT

FG for transformations offinite
graphs by generalizing and extending an existing calculus UnCAL.
Whereas UnCAL can treat only unordered graphs,λT

FG can treat
a variety of graph models: directed edge-labeled graphs whose
branch styles are represented by monadsT . For example,λT

FG

can treat unordered graphs, ordered graphs, weighted graphs, prob-
ability graphs, and so on, by using the powerset monad, list monad,
multiset monad, probability monad, respectively. InλT

FG, graphs
are considered as extension of tree data structures, i.e. as infinite
(regular) trees, so the semantics is given with bisimilarity.

A remarkable feature of UnCAL andλT
FG is structural recursion

for graphs, which gives a systematic programming basis like that
for trees. Despite the non-well-foundedness of graphs, by suitably
restricting the structural recursion, UnCAL andλT

FG ensures that
there is a termination property and that all transformations preserve
the finiteness of the graphs. The structural recursion is defined in a
"divide-and-aggregate" way; "aggregation" is done by connecting
graphs withε-edges, which are similar to theε-transitions of au-
tomata. We give a suitable general definition of bisimilarity, taking
account ofε-edges; then we show that the structural recursion is
well defined with respect to the bisimilarity.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications—
Specialized application languages; E.1 [Data Structures]: Graphs
and networks

General Terms
Language, Theory

Keywords
graph transformation, bisimilarity, structural recursion, graph alge-
bra, monad, epsilon edge

This is a full version of the paper to apper in Proc. of the 15th International Symposium
on Principles and Practice of Declarative Programming (PPDP ’13). ACM holds the
copyright of the definite version.

1. INTRODUCTION
Designing graph transformation languages is difficult in gen-

eral, because graph structured data may have cycles and shared
nodes. There are three major difficulties: consistency, finiteness-
preservation, and termination of evaluation. The consistency indi-
cates the same treatment of ‘equivalent’ graphs, where equivalence
is usually specified by either bisimilarity or isomorphism. Graphs
up to bisimilarity are equivalent to infinite trees, whereas graphs
up to isomorphism are “graphs as they look”. In this paper, we fo-
cus on graphs up to bisimilarity for the application to querying tree
databases with cyclic references such as XML with IDREF. Ensur-
ing consistency requires that every graph transformation isbisim-
ulation generic: i.e., the transformation results of bisimilar graphs
are bisimilar.

For finiteness-preservation, it means that every term maps finite
graphs (graphs with finite number of nodes) to finite graphs; this
and the termination properties are important for graph query lan-
guages. Full recursion, which is a typical way of constructing pow-
erful transformations, is not desirable, since the termination and
finiteness-preservation do not hold. Structural recursion (fold) for
inductive datatypes such as lists and finite trees naturally has both
properties; however for graphs, because of the non-well-founded
nature, it is difficult to find such a structural recursion. Functions
defined by corecursion (unfold) terminate, but do not necessarily
return finite graphs.

One prominent step to solve these problems was given in the
work of UnCAL [6]. Their structural recursion for graphs is suit-
ably restricted from that for infinite trees so that the termination
and finiteness-preservation hold. The expressive power is less than
that of fold for finite trees, but it is still powerful enough to translate
an SQL-style graph query language—called UnQL—into UnCAL.
Moreover, they gave bulk semantics for the structural recursion,
which is “divide-and-aggregate” style semantics and enables par-
allel evaluation. The key to defining the structural recursion of
UnCAL is use ofε-edges, which work as shortcut like theε-
transitions of automata. Then the bulk semantics makes it easier
to prove the finiteness-preservation and termination properties.
UnCAL is used also as a basis for bidirectional graph transforma-
tion [15] and for model driven software engineering [27].

However, there is a big restriction on UnCAL: graph models
of UnCAL are just unordered graphs, i.e., graphs whose branches
have no sibling order; while in real applications, there are many
graph models such as ordered graphs, weighted graphs, probabil-
ity graphs, etc. Though, when we generalize the graph model of
UnCAL, we come across a subtle problem: how can we generally
define the notion of bisimilarity for each graph model that has the

1

notion ofε-edge?
Additionally, we should point out that UnCAL has another weak

point. The structural recursion of UnCAL is a higher order function
like the fold for trees, but the bisimulation genericity of the struc-
tural recursion in UnCAL has been proved only on the first order
part, and UnCAL is formulated as just first order calculus, which
blurs how to extend UnCAL to richer type systems.

In previous work [14], the authors studied how to modify the
graph model of UnCAL so that we can treat ordered graphs in a
similar way to UnCAL. There it is found thatε-edges of ordered
graphs may produce a subtle problem ofinfinite widthon branches;
this problem does not occur in the case of unordered graphs. It
was resolved by proposing a new calculus for finite ordered graphs,
giving a new definition of bisimilarity for ordered graphs havingε-
edges, and giving the semantics of the calculus for ordered graphs.
The calculus is extended with higher order functions and formu-
lated as an extension of simply typed lambda calculus.

Along that line, in this paper we further generalize the graph
models, and propose a family of calculiλT

FG, which is parametrized
by monadsT ; eachλT

FG can treat graphs whose branches are rep-
resented by a monadT . For example, whenT is the finite powerset
monad,λT

FG becomes UnCAL, precisely, UnCAL extended as a
simply typed lambda calculus. To introduceλT

FG, we generalize
all the features of UnCAL with monads: i.e., its graph models, its
graph constructors, and the structural recursion.

In Section2, we generalize the graph models from unordered
graphs toT -graphs, by using a monadT (with some reasonable
assumption) to represent various branch styles. WhenT is the list
monad, the finite multiset monad, and the finite probability distri-
bution monad, thenT -graphs are ordered graphs, weighted graphs,
and probability graphs, respectively. We also give a general defini-
tion of bisimilarity forT -graphs, takingε-edges into account.

In Section3, we introduce the syntax and the semantics of the
lambda calculiλT

FG. We give the definition of graph constructors,
and show that all finiteT -graphs can be represented by those graph
constructors. Then, we give a simple definition of the bulk seman-
tics of the structural recursion forλT

FG, and we prove that all trans-
formations ofλT

FG are bisimulation generic. As well as generaliz-
ing with monads,λT

FG is extended from UnCAL with higher order
functions, which is not for free but due to that our main theorem—
bisimulation genericity of the bulk semantics—is stronger than the
corresponding theorem for UnCAL [6].

In Section4 we discuss related work, which includes more detail
comparison betweenλT

FG and the calculus in [14].
Our contributions are summarized as follows:

• We generalize the graph model of UnCAL with monads by
applying coalgebra theory; also we present a general def-
inition of semantic equivalence for graphs havingε-edges,
which is given by combination of ordinary bisimilarity and
ε-elimination.

• We generally define graph constructors and structural recur-
sion forT -graphs, with identifying suitable assumptions on
the finiteness ofT for the sake of practical use, which is dis-
cussed in Sections2.2.1and3.2.4.

• We show that any finiteT -graph can be constructed using
graph constructors; also we find and utilize several equa-
tional properties for graph constructors.

• We extend semantic equivalence for graphs to higher order
functions and show the bisimulation genericity of structural
recursion as a higher order function, which enables us to re-

formulate UnCAL to more powerful and familiar style of cal-
culus, i.e., the simply typed lambda calculusλT

FG.

• The reformulation makes it clear that we can further ex-
tendλT

FG with familiar features such as coproduct, algebraic
datatypes, polymorphic types, dependent types, and so on.
In fact, although the current formulation ofλT

FG (and also
UnCAL) does not include transformations for manipulating
the sibling direction—e.g., reversing the order of branches
of an ordered graph—we can add such transformations, us-
ing the above flexibility of extendingλT

FG. (See [2] for the
details of such an extension for sibling transformations.)

2. GRAPH MODEL AND BISIMILARITY
First, we explain what kind of graphs theλT

FG-terms can trans-
form. After that, we give the semantic equivalence of the graphs:
i.e., bisimilarity withε-elimination.

2.1 Graph Model of λT
FG

The graphs inλT
FG are rooted, directed, and edge-labeled graphs.

Furthermore, the graph model ofλT
FG has two notable features:ε-

edgesandmarkers. An ε-edge represents a shortcut between the
two nodes; the shortcut works like theε-transition in an automaton.
Nodes may be marked withinput and output markers; these are
used as interfaces to connect a graph to another graph byε-edges.
(This is done by@ andcycle as the dotted edges in Figure4, and
by srec as in Figure5.)

Let us introduce the notion of aT -graph, which has “T -kind of
branches”, for a monadT . First, though, let us recall the notion
of a monad (in the Kleisli triple style): amonadonSet is a triple
T = (T, return, lift) of functions

T : |Set| → |Set|
returnS : S → T (S) (S ∈ |Set|)
liftS,S′ : (S → T (S′))→ (T (S)→ T (S′)) (S, S′ ∈ |Set|)

such that these satisfy certain axioms (see [23, 4] for the axioms).

Example 1 (List Monad). The list functorList forms a monad
with the following monad structures:

return(x) = [x]
lift f xs = concat (map f xs)

whereconcat is to flatten a list of lists to a list. 2

Now, let us define the graph model. We useL to denote a set of
labelsandLϵ to denote the disjoint unionL ∪ {ε}. Let X andY
be finite sets ofmarkers; we add the prefix& for meta-variables of
markers like&x . Then, aT -graph(or justgraph) G is defined as a
triple (V,B, I) where

• V is a set ofnodes,

• B : V → T (Lϵ×V+Y) is a branch function, where an el-
ementx in Lϵ×V+Y (called a branch) is eitheran edge
Edge (l, v) or an output markerOutm (&y), and

• I : X → V is a function, which determinesinput nodes
(roots) of the graph.

In terms of coalgebra theory, aT -graph is a coalgebraB of the
endofunctorT (Lϵ×(-)+Y) equipped withI : X → V , which can
be regarded as a generalized element (state) ofV .

2

�

�

�

�

�

�
� ��

��

V = { 1, 2, 3, 4}
B(1) = [Edge (d, 2) ,Edge (a, 4)]
B(2) = [Edge (c, 3)]
B(3) = [Edge (d, 2)]
B(4) = [Edge (b, 3) ,Outm (&y)]
I(&) = 1

Figure 1: Example of Ordered Graph

Example 2 (Unordered/Ordered/Weighted/Probability Graphs).
For the finite powerset monadPfin, Pfin-graphs areunordered
graphs, which are (equivalent to) the graph model of UnCAL.
List-graphs areordered graphs[14], where the branches are or-

dered. An example of an ordered graph is shown in Figure1.
Thefinite multiset monad(bag monad) is defined asMfin:

Mfin(S)
def
= {ϕ: S→N | ϕ−1(N−{0}): finite}.

Branches ofMfin-graphs have the bag semantics (rather than set
semantics ofPfin), i.e., multiplicity (calledweight) of an identical
branch is not ignored.

Thefinite probability distribution monadDfin is defined as

Dfin(S)
def
= {ϕ: S→[0, 1] | ϕ−1((0, 1]): finite, Σsϕ(s)=1}.

The monad structure is defined as below: fors ∈ S, return(s) is
the Dirac delta functionδs : S → [0, 1]:

δs(s)
def
= 1 δs(x)

def
= 0 (x ̸= s)

and forf : S → Dfin(S
′),

lift(f): Dfin(S)→ Dfin(S
′)

(ϕ: S → [0, 1]) 7→

 lift(f)(ϕ): S′ → [0, 1]

s′ 7→
∑
s∈S

(
ϕ(s) · f(s)(s′)

)
 .

Dfin-graphs have probabilistic branches. 2

The set1 of graphs—withX andY as sets of input and output
markers, respectively—is denoted byT GXY ; here,T may be omit-
ted asGXY if it is clear from the context. We call aT -graph afinite
T -graph whenV is a finite set, and writeT GfXY for the set of finite
T -graphs (in [6], Pfin GfXY is written asDBX

Y).
We allow a graph to have multiple roots: a multi-rooted graph is

to a forest as a single-rooted graph is to a tree. For single-rooted
graphs, we often use adefault marker& to indicate the root and use
GY to denoteG{&}

Y .
Note that a node can have several output markers—if a monadT

is non-deterministic as the above examples—and an output marker
can be put on several nodes; while, a node can be pointed by several
input markers, but an input marker points just one node.

2.2 Graph Equivalence in λT
FG: Bisimilarity

with ε-elimination
In the remaining part of this section, we give a semantic equiva-

lence of graphs ofλT
FG. As discussed in the introduction, we regard

the graphs inλT
FG as an extended tree data structure, i.e., as infinite

trees, so we shall use bisimilarity semantics rather than equality or
isomorphism semantics.

1 Precisely, this is not a set but a proper class, but this matter is
resolved in usual way in coalgebra theory, ifT is ranked. In this
paper, we consider only ranked monads.

The main difficulty with our definition of bisimilarity is the treat-
ment ofε-edges. We first explainstrong bisimilarity, in which we
regard the labelε as a usual label such as those inL. Then, we
definebisimilarity, which “skips”ε-edges.

Note that our notion of bisimilarity for the invisible labelε is dif-
ferent fromweak bisimilarityfor the invisible labelτ in the context
of process algebra [21]. One purpose of our use ofε-edges is to
postpone the calculations of the graph constructors, structural re-
cursion, and so on, but weak bisimilarity is unsuitable for expected
properties of such graph transformations: e.g., weak bisimilarity
can not ensure the associativity of the graph constructor∪ (defined
in the next section).

Now, let us recall the notion of a bisimulation relation for any
endofunctorF onSet. First, we definerelational lifting F̃ of F .
For a relationR ⊆ V×V ′, i.e., for an inclusion⟨r, r′⟩: R ↪→
V×V ′, we obtain⟨F (r), F (r′)⟩ : F (R) → F (V)×F (V ′); then
the relationF̃ (R) ⊆ F (V)×F (V ′) can be defined as the image
⟨F (r), F (r′)⟩(F (R)). Next, for two coalgebrasof F , i.e., two
functionsB : V → F (V) andB′ : V ′ → F (V ′), a bisimulation
relation R betweenB andB′ is a relationR ⊆ V×V ′ such that
(B×B′)(R) ⊆ F̃ (R).

Definition 3 (Strong Bisimilarity). Let T be a monad, andG =
(V,B, I) andG′ = (V ′, B′, I ′) beT -graphs inT GXY . ThenG
andG′ arestrongly bisimilarif there is a bisimulation relationR
with respect to the endofunctorT (Lϵ×(-)+Y) betweenB andB′

such that for any&x ∈ X, I(&x) R I ′(&x); in this case, we write
G ∼s G

′. 2

We assume that all monadsT in the paper preserve weak-
pullbacks, which is a mild assumption often used in coalgebra
theory [26, 30]. In particular, thenT preserves injections and finite
intersections. Using this assumption, it is easily checked that the
strong bisimilarity relation is an equivalence relation onT GXY .

Let us unfold the above abstract definition of strong bisimilarity,
whenT = Pfin:

R: a bisimulation relation forPfin(Lϵ×(-)+Y)

⇐⇒∀(v, v′)∈R. (B(v), B′(v′)) ∈
⟨Pfin(Lϵ×r+Y),Pfin(Lϵ×r′+Y)⟩(Pfin(Lϵ×R+Y))

⇐⇒∀(v, v′)∈R. ∃S ⊆fin Lϵ×R+Y.

B(v)=(Lϵ×r+Y)(S) ∧ B′(v′)=(Lϵ×r′+Y)(S)

⇐⇒∀(v, v′)∈R. ∃{(l1,(u1,u
′
1)), ..., (ln,(un,u

′
n)),&y1, ...,&ym}

⊆fin Lϵ×R+Y.

B(v)={(l1, u1), ..., (ln, un),&y1, ...,&ym} ∧
B′(v′)={(l1, u′

1), ..., (ln, u
′
n),&y1, ...,&ym}

⇐⇒∀(v, v′)∈R.(
∀(l, u)∈B(v). ∃u′. (l, u′)∈B′(v′) ∧ (u, u′)∈R

)
∧(

∀&y∈B(v). &y∈B′(v′)
)
∧(

∀(l, u′)∈B′(v′). ∃u. (l, u)∈B(v)∧(u, u′)∈R
)
∧(

∀&y∈B′(v′). &y∈B(v)
)

The last formula can be expressed as in the following pictures.

∀v
∀l //

R

∀u
R

∀v′
l //∃u′

∀v
l //

R

∃u
R

∀v′
∀l //∀u′

∀v
om

R

∀&y

∀v′
om

&y

∀v
om

R

&y

∀v′
om

∀&y

Now, let us define our bisimilarity, whose instantiation to
the case whenT = Pfin should agree with the bisimilarity of

3

UnCAL [6]. The bisimilarity of UnCAL is defined by replacing
the first and the third pictures above with the following two pictures
(and similarly for the second and the fourth pictures).

∀v
ε //

R

∀v1
ε //... ε //∀vk

∀l //∀u
R

∀v′
ε //∃v′1

ε //... ε //∃v′k′
l //∃u′

∀v
ε //

R

∀v1
ε //... ε //∀vk om

∀&y

∀v′
ε //∃v′1

ε //... ε //∃v′k′ om &y

With this bisimulation, we “skip” zero or more occurrences ofε-
edges before a non-ε edge or an output marker. Categorically, this
kind of iteration is captured by the notion of aniteration operator,
which is the dual notion of a fixed-point operator [29, 17]. From
now we defineε-elimination—which is almost the same as that for
an ε-automaton—in terms of an iteration operator in the Kleisli
category of a monadT , and then give a definition of bisimilarity
for T -graphs.

For a monadT onSet, theKleisli categorySetT of T is defined
as below: objects inSetT are sets, and morphismsS → S′ are
functionsS → T (S′). The identity morphismid onS is

id
def
= return : S → T (S),

and the compositiong ◦ f of f : S → T (S′) andg : S′ → T (S′′)
is defined as

g ◦ f def
= lift(g) ◦ f : S → T (S′′).

A Kleisli category has coproducts: the coproduct ofS1 andS2 is
justS1+S2, and the injections are

in l
def
= return ◦ in l : S1 → T (S1+S2)

inr
def
= return ◦ inr : S2 → T (S1+S2).

Copairing of a pair of functionsf1 : S1 → T (S′) andf2 : S2 →
T (S′) is the same as the copairing inSet, i.e.,

[f1, f2]: S1+S2 → T (S′).

We write∇: S+S → T (S) and+ for the codiagonal and the
coproduct on morphisms inSetT , respectively.

Next we recall the notion of an iteration operator [10, 17].
Though we can define an iteration operator for any category with
finite coproducts, here, we define it directly on the Kleisli category
SetT of a monadT onSet, and say thata monadT has an itera-
tion operatorif SetT has it. Aniteration operatoriter onSetT
is an operator on functions

f : S → T (S+A)
iter(f): S → T (A)

such that the operator satisfies the following axioms:

• (naturality:) forf : S → T (S+A) andg : A→ T (A′),

g ◦ iter(f) = iter((idS+g) ◦ f): S → T (A′),

• (dinaturality:) forf : S → T (S′+A) andg : S′ → T (S+A),

[iter([f, inr] ◦ g), idA] ◦ f = iter([g, inr] ◦ f): S → T (A),

• (unfolding:) forf : S → T (S+A),

iterf = [iterf, idA] ◦ f : S → T (A),

• (codiagonal:) forf : S → T (S+S+A),

iter(iterf) = iter((∇+idA) ◦ f): S → T (A).

Further, for a classM of morphisms ofSetT , iter is calleduni-
form onM if for any function f : S → T (S′) in M, and any
functionsg : S′ → T (S′+A) andh: S → T (S+A),

iter(g) ◦ f = iter(h): S → T (A)

whenever

g ◦ f = (f+idA) ◦h: S → T (S′+A).

The axiom of uniformity is used for logical relation on an it-
eration operator [12]. We use uniformity to show later that strong
bisimilarity implies bisimilarity, and also in the proof of Lemma16.

Example 4 (Monads with Iteration Operators). For the count-
able powerset monadPcnt and a morphismf : S → Pcnt(S+S′)
in SetPcnt ,

iter(f)(s)
def
= {s′∈S′ | ∃k∈N. ∃s1, ..., sk∈S.

s1∈f(s) ∧ ... ∧ sk∈f(sk−1) ∧ s′∈f(sk)}.

Also, thecountable multiset monadMcnt:

Mcnt(S)
def
= {ϕ: S → N∪{∞} | ϕ−1(N−{0}) is countable}

has an iteration operator, which is given with the same formula as
that forPcnt.

Extending the list monad—List(S)
def
= ∏n∈NS

n—, acountable
list monadCList is defined as

CList(S)
def
= ∏L∈LS

L,

whereN is generalized toL, the set of countable linear ordered sets
up to order isomorphism2. SetCList also has an iteration operator
(see [14, 2] for the details).

For probability graphs,countable subprobability distribution
monadSubDcnt has an iteration operator:

SubDcnt(S)
def
=

{ϕ: S → [0, 1] | ϕ−1((0, 1]) is countable,Σxϕ(x) ≤ 1}.

Note that here the summation of probabilitiesΣxϕ(x) is not neces-
sarily 1; this is because the probability1−Σxϕ(x) is reserved for
the probability of the nontermination of the iteration operator. The
definition of the iteration operator forSubDcnt is also similar to
those forPcnt andMcnt, see [16] for the details. 2

Now, let us defineε-elimination. The following characterization
of ε-elimination as an iteration operator is due to [13, 16].

Definition 5 (ε-elimination). Let T be a monad anditer be an
iteration operator inSetT . For aT -graphG = (V,B, I) ∈ T GXY ,
its ε-eliminationε-elim(G) ∈ T GXY is (V,B′, I) where

B′ def
= embed ◦ iter(iso ◦B),

embed is the embeddingT (L×V+Y)→ T (Lϵ×V+Y), andiso
is the composition of

T (Lϵ×V+Y) ∼= T ((L+1)×V+Y) ∼= T (V+(L×V+Y)).

Conversely,ε-elimination induces an iteration operator; let us
consider aT -graph(V,B, I) in the case thatL=0. ThenB : V →
T ({ε}×V+Y), and if we applyε-elimination to this, the resulting

2 More precisely,CList(S) is the set of objects of the skeleton of
the comma category(U ↓S) whereU : CLO → Set is the for-
getful functor from the categoryCLO of countable linear ordered
sets and monotone functions.

4

branch function isB′ : V → T (0×V+Y). That is, we get an
operator that maps a functionV → T (V+Y) to a functionV →
T (Y). This operator is the same as the structure of an iteration
operator in the Kleisli category (if we allowY to be arbitrary sets);
and then we find that it is natural to adopt the axioms of iteration
operators as axioms of theε-elimination.

Now, let us define our bisimilarity for graphs havingε-edges.

Definition 6 (Bisimilarity). Let T be a monad having an iteration
operatoriter in the Kleisli categorySetT , andG = (V,B, I) and
G′ = (V ′, B′, I ′) be T -graphs inT GXY . Then,G andG′ are
bisimilar if ε-elim(G) andε-elim(G′) are strongly bisimilar; in
this case, we writeG ∼ G′. 2

It immediately follows that strong bisimilarity implies bisimilar-
ity, if the iteration operator ofT is uniform on the class of functions
(rather than not necessarily on all morphisms inSetT). We use this
property in some of the proofs in this paper.

WhenT = Pcnt, by unfolding the above definition, we get the
original definition of bisimilarity in UnCAL.

The above definition implies that the notion of anε-edge a la
ε-elimination is independent of bisimilarity semantics, and it can
be accommodated in any equivalence relation, such as equality and
graph isomorphism, by similarly taking inverse images.

2.2.1 Generalization of Bisimilarity with Monad Ex-
tension

Although we could define bisimilarity as above, whenT is one
of the monads in Example4, theT -graphs might have countably
infinite width of branches. In a real database system, a graph (is
often very large but) has finite size, i.e., finite number of nodes
and a finite width. In other words, real data graphs do not have
ε-edges, which cause graphs to have infinite widths. Our use of
ε-edge is just in an implementation ofλT

FG for efficiency and for
defining structural recursion; so we shall suppose that what users
of λT

FG can observe is just finite-width graphs, and graphs whose
ε-elimination have infinite widths are regarded as errors. (For any
finite List-graphG, it is decidable whether theε-elimination ofG
keeps finite width or not; see [14, 2].)

Therefore, the finite powerset monad and the other monads in
Example2 are more suitable for practical purposes; however, they
do not have iteration operators. Hence, we do not require thatT it-
self has an iteration operator in the Kleisli category, and instead we
use the following assumption: we say thatT has an extensionT ′

for ε-eliminationif we have a monadT ′, an injective monad mor-
phismι : T ↪→ T ′, and an iteration operator in the Kleisli category
of T ′ that satisfies the uniformity on the class of functions. Here,
monad morphismis a natural transformation that is compatible with
return ’s and withlift ’s (see [4] for the details).

Definition 7 (Bisimilarity Generalized on Size). LetT be a monad
which has an extensionT ′ for ε-elimination. Then there is an
embeddingι GXY : T GXY ↪→ T ′ GXY which maps(V,B, I) to
(V, ι(Lϵ×V +Y)◦B, I). For G andG′ in T GXY , G and G′ are
bisimilar if ι GXY (G) and ι GXY (G′) are bisimilar in the sense of
Definition6. 2

From the assumption thatι has injective components andT pre-
serves weak pullbacks,ι GXY reflects strong bisimilarity [30, The-
orem 4.3.6]; hence, strong bisimilarity and the above bisimilarity
are equivalent forT -graphs having noε-edges.

In the next section, we assume that a monadT is finitary and
see the usefulness; after that, in Section3.2.4we will come back
to more detail discussion why and how we need an extension of a
monad forε-elimination.

Terme ::= x | λx.e | ee | (e, e) | πle | πre { lambda terms }
| if e then e else e { conditional }
| ops { T -algebraic graph constructors (s ∈ Σ) }
| ⟨e : e⟩ | ⟨&y⟩ | &x := e | () | e⊕ e | e @ e |
| cycle(e) { common graph constructors }
| srec(e)(e) { structural recursion application }
| a | e = e { label (a ∈ L) and label equality }

Typeσ ::=Bool | Label |GX
Y { boolean, label, graph types }

|σ × σ | σ → σ { product types and function types }

Figure 2: Syntax ofλT
FG

(s ∈ Σ, s: n-arity)
Γ ⊢ ops : G

X
Y

n → GX
Y

Γ ⊢ e1 : Label
Γ ⊢ e2 : GY

Γ ⊢ ⟨e1: e2⟩ : GY

(&y ∈ Y)

Γ ⊢ ⟨&y⟩: GY

Γ ⊢ e: GY

Γ ⊢ &x := e: G
{&x}
Y

Γ ⊢ (): G∅
Y

Γ ⊢ e1 : G
X1
Y Γ ⊢ e2 : G

X2
Y

(X1 ∩X2 = ∅)
Γ ⊢ e1 ⊕ e2 : G

X1∪X2
Y

Γ ⊢ e1 : G
X
Y

Γ ⊢ e2 : G
Y
Z

Γ ⊢ e1 @ e2 : GX
Z

Γ ⊢ e: GX
X∪Y (X ∩ Y = ∅)

Γ ⊢ cycle(e): GX
Y

Γ, l:Label, g :GY ⊢ e1 : G
Z
Z Γ ⊢ e2 : G

X
Y

Γ ⊢ srec(λ(l, g).e1)(e2): G
Z×X
Z×Y

(Just unfamiliar rules are listed. We usel andg as meta variables
for variables of typesLabel andGX

Y , respectively.)

Figure 3: Typing Rules ofλT
FG

3. SYNTAX AND SEMANTICS OF λT
FG

Here, we give the syntax ofλT
FG and its semantics. The seman-

tics of λT
FG has two steps. The first step is an interpretation to

just in the(V,B, I) form, without considering bisimilarity. This
is equality-based semantics rather than bisimilarity-based one. The
next step is to give an interpretation up to the bisimilarity; to do
so, we need to showbisimulation genericityof terms, i.e., well-
definedness in terms of bisimilarity. Since structural recursion is
a higher order function, before showing bisimulation genericity,
we will extend the equivalence relation of bisimilarity to function
types.

3.1 Syntax ofλT
FG

The syntax ofλT
FG is given in Figure2, and the typing rule is

given in Figure3. The syntax ofλT
FG in fact depends on not only

a monadT but also its signatureΣ, which will be explained in the
next subsection. However, the expressive power ofλT

FG is indepen-
dent of a choice of the signaturesΣ.

3.2 Graph Constructors
Here, we give an interpretation of the graph constructors inλT

FG.
The original UnCAL andλPfin

FG have the nine graph constructors
in Figure4, by which all finite graphs can be represented. (In the
original UnCAL, the graph constructors⟨a : -⟩ and⟨&y⟩ are written
as{a : -} and&y , respectively.) Note that these constructors should

5

G

&x G

&x

()

&x1...&xm

&y1...&yn

&x'1...&x'm'

&y1...&yn

G G'

G G' G G'

&x1...&xk

&y1...&ym
G

&z1...&zn

&y1...&ym

G'

G G'

G G'

&x1...&xm

cycle(G)

&x1...&xm

&x1...&xm

G

&y1...&yn

&y

&y

&

a G

G

a
&

&

Figure 4: Nine Graph Constructors of λPfin
FG

be written as{}Y , G1 ∪X,Y G2, and so on with type (marker-sets)
annotation; however, we will omit the subscriptX andY to avoid
clutter.

We separate the nine graph constructors intocommon graph con-
structorsandT -algebraic graph constructors. WhenT = Pfin, {}
and∪ areT -algebraic graph constructors, and the other seven graph
constructors are common graph constructors. Common graph con-
structors are defined independently of the difference of monads,
while the definition ofT -algebraic graph constructors depends on
algebraic operations ofT .

3.2.1 Common Graph Constructors
We first give a definition of common graph constructors.

Definition 8 (Common Graph Constructors). LetT be a monad.

• ForG = (V,B, I) ∈ GY ,

⟨a : G⟩ def
= (V ∪ {v0 : fresh}, B′, {& 7→ v0}) ∈ GY

whereB′(v)
def
= B(v) andB′(v0)

def
= return

(
Edge (a, I(&))

)
.

• For &y ∈ Y ,

⟨&y⟩ def
= ({&}, {& 7→ return(Outm (&y))}, id{&}) ∈ GY .

• ForG = (V,B, I) ∈ GY ,

(&x := G)
def
= (V,B, {&x 7→ I(&)}) ∈ G{&x}

Y .

• ()
def
= (∅, “the unique function from∅” , id∅) ∈ G∅Y .

• For G = (V,B, I) ∈ GXY andG′ = (V ′, B′, I ′) ∈ GX
′

Y

such thatX ∩X ′ = ∅,

G⊕G′ def
= (V+V ′, B′′, I+I ′) ∈ GX∪X′

Y

whereB′′ def
= [T (Lϵ×(in l)+Y) ◦ B, T (Lϵ×(inr)+Y) ◦

B′]: V+V ′ → T (Lϵ×(V+V ′)+Y).

• ForG = (V,B, I) ∈ GXY andG′ = (V ′, B′, I ′) ∈ GYZ ,

G @G′ def
= (V+V ′, B′′, in l ◦ I) ∈ GXZ

where

B′′(inl(v))
def
= T (f)(B(v)) f : Lϵ×V+Y → Lϵ×(V+V ′)+Z

Edge (l, v) 7→ Edge (l, in l(v))

Outm (&y) 7→ Edge
(
ε, inr (I

′(&y))
)


B′′(inr(v
′))

def
= (T (Lϵ×(inr)+Z))(B′(v′))

• For a graphG = (V,B, I) ∈ GXX∪Y such thatX ∩ Y = ∅,

cycle(G)
def
= (V,B′, I) ∈ GXY

whereB′(v)
def
= T (f)(B(v)).

f : Lϵ×V+(X ∪ Y)→ Lϵ×V+Y

Edge (l, v) 7→ Edge (l, v)

Outm (&x) 7→ Edge (ε, I(&x))

Outm (&y) 7→ Outm (&y)


2

Remark for Figure4: Recall that, for one graphG in GXY and
one marker&y ∈ Y , there may be more than one or zero&y-
occurrences inG, while for one marker&x ∈ X, there must be just
one&x -input node inG. Hence, for each&y i in G @G′ in the fig-
ure, although the number ofε-edges from a node with&y i-output
marker seems just one, in fact we add the same number ofε-edges
as the number of&y i-output marker occurrences inG. This is the
same forcycle(G); but, onG ∪G′, the number of addedε-edges
are just2m.

3.2.2 T -Algebraic Graph Constructors
Here, we will define theT -algebraic graph constructors. The

definition depends on algebraic operations of a monadT , and the
syntax forT -algebraic graph constructors depends on a signature
Σ generating the monadT . For example, a finite powersetPfin(X)
is a free semilattice, which has two algebraic operators, i.e., bottom
and join. In the syntax ofλPfin

FG , when we choose the signatureΣ
of (the function symbols of) bottom and join, thenops (s ∈ Σ)
have the same interpretation as the two graph constructors{} and
∪ in the original UnCAL. Below, we first define the interpretation
of T -algebraic graph constructors without considering signatures,
and after that we consider signatures for syntax ofλT

FG.
Later, we assumeT to be finitary in order to prove Proposi-

tion 11. A finitary monadonSet is a monadT onSet such that the
functorT preserves all directed colimits inSet; in other words, for
any setS and anyx ∈ T (S), there is a finite subsetS′ ⊆ S such
thatx ∈ T (S′). The monadsPfin, List , Mfin, andDfin are all fini-
tary monads; for example, for [4, 1, 6, 4, 6, 4] ∈ List(N), we have
a finite subset{4, 1, 6} ⊆ N and [4, 1, 6, 4, 6, 4] ∈ List({4, 1, 6}).

Here, though we define graphs in(V,B, I) form, when we con-
sider the property of graph operations, we consider them up to
bisimilarity. Hence, we assume thatT has an extension forε-
elimination.

First, we explain that definingT -algebraic graph constructors
for multi-rooted graphs is reduced to that for single-rooted graphs.
Note that the multi-rootedness is semantically the same as the
power of sets of graphs: i.e., there is the following bijection.

oplus : (GfY)X
∼=→ GfXY

f 7→ ⊕
&x∈X

&x := f(&x)

(&x 7→ ⟨&x⟩@G)← [G
For ann-ary operatoro: Sn → S on a setS, there is the obvi-
ousn-ary operatoro(X) on theX-th power ofS: i.e., the com-

6

position of (SX)n
∼=−→ (Sn)X

oX−−→ SX ; we call thispower al-
gebra. Then, whenT = Pfin, i.e., for UnCAL, it can be shown
that∪: (GfXY)2 → GfXY is nothing but theX-th power algebra of
∪: (GfY)2 → GfY . Hence, we will defineT -algebraic graph con-
structors with the type(GfY)n → GfY .

Now, for a finitary monadT , let us define a functionTG as

TG(X)
def
= T GfX for a finite setX. As we will soon show,TG it-

self can be extended to a finitary monad. Then, for constructing op-
erators of the type(GfY)n → GfY , i.e.,TG(Y)n → TG(Y)we can
use the result [24] that an elements in T (n) bijectively corresponds
to a familyo(s) of n-ary operators(o(s)Y : T (Y)n → T (Y))Y : set

that is natural onY ∈ SetT . In this context,s is called ageneric
effect, ando(s) is called analgebraic operation. For s ∈ T (n),
o(s) is defined as

o(s)Y : T (Y)n(= n→T (Y))→ T (Y) (1)

f 7→ liftT (f)(s)

and for(oY : T (Y)n → T (Y))Y : SetT , the correspondings is de-
fined ason(returnT

n). For example, whenT = Pfin, {0, 1} ∈
Pfin(2) (2 = {0, 1}) corresponds to∪: Pfin(Y)2 → Pfin(Y).
From now, we apply this correspondence to the case ofTG asT .
Then we will show that, for a given finitary monadT , there is an
embedding ofT into TG , so that we can defineT -algebraic graph
constructors by algebraic operations ofT .

Now, let us define the monadTG . Here, we consider only fi-
nite sets, since it is enough here (and also since finitary monads are
determined by definitions for finite sets by the left Kan-extension
as in [18, Proposition 7.6]). The monad structures ofTG are de-

fined as follows: returnTG
: X → GfX maps&x to ⟨&x ⟩, and

liftT
G
: (X → GfY) → (GfX → GfY) mapsf to (-) @oplus(f).

Thus, a graph inGfXY (∼= (GfY)X) can be regarded as a “function”
fromX toY (precisely, a morphism in the Kleisli category ofTG);
then the composition is given by@ operator. For later use, for
f : X → Y , we define itsmarker renaming graph

⌊f⌋ def
= oplus(returnTG

Y ◦ f) ∈ GfXY .

Then,⌊idX⌋ becomes the identity for the composition@.
Next, we define a monad morphismγ : T → TG ; for a finite

setX ands ∈ T (X), γ(s)
def
= ({∗}, B, {& 7→ ∗}) ∈ GfX where

B(∗) def
= T (inr)(s) ∈ T (Lϵ×{&}+X). For example, forT =

Pfin and2 = {&0,&1} ∈ Pfin(2), γ(2) ∈ TG(2) = Gf 2 is a single
node graph where the node has two output markers&0 and&1 and
no edges.

Now, as promised above, let us considerTG as an instance ofT
for the function (1). Forn = {&0, ...,&n 1} andG ∈ TG(n) =
Gfn, its algebraic operation is

o(G)Y : (GfY)n → GfY
f 7→ G @oplus(f).

For example, forT = Pfin and2 = {&0,&1} ∈ Pfin(2), the binary
operator

o(γ(2))Y : (GfY)2 → GfY
(G0, G1) 7→ γ(2) @ (&0 := G0 ⊕ &1 := G1) (2)

agrees with∪: (GfY)2 → GfY in UnCAL. As explained above,∪
for GfXY in Figure4 is just theX-th power algebra of∪ for GfY .
Observe that, corresponding to@ and⊕ occurring in (2), in Fig-
ure4, the graph constructor∪ has similar parts to@ and⊕.

Let us sum up the above.

Definition 9 (T -Algebraic Graph Constructor). Let T be a fini-
tary monad. For a generic effects ∈ T (n) (n = {&0, ...,&n 1}),
theT -algebraic graph constructorops of s is defined as below.

For graphsG0, ..., Gn 1 ∈ GfXY ,

ops(G0, ..., Gn 1)
def
= (γ(s)·X) @

(
n 1
⊕
i=0

(⌊isoi⌋@Gi)

)
∈ GfXY

where

γ(s)·X def
= ⊕

&x∈X
(&x := (γ(s) @⌊in&x⌋)) ∈ GfXn×X

in&x
def
= {&i 7→ (&i,&x)}: n→ n×X

isoi
def
= πr : {&i}×X → X. 2

Signatures of Monads
In general, there are infinitely many generic effectss ∈ T (n)(n =
1, 2, ...). For defining syntax ofλT

FG, we have to choose a setΣ
of generic effects such thatΣ is “representable in computer” and
generates all generic effects.

For a finitary monad, there is a subsetΣ of ∏n∈NT (n) such
that, for every setS, any generic effect inT (S) is a finitely
many times iterated composition of some generic effects inΣ;
here, for generic effectss ∈ T (n)(n={0, ..., n 1}) and ti ∈
T (S)(i = 0, ..., n 1), their compositionmeans the Kleisli com-
position liftT (i 7→ ti)(s) ∈ T (S). We call suchΣ a signature
and call an elements in Σ ∩ T (n) a function symbol of arityn.
The whole set ∏n∈NT (n) itself is one (maximum) signature, but
usually there is a much smaller signature—finite, or presentable in
a meta language for implementation—as the following examples.

Example 10. When T = Pfin, we can take a signature{{}(∈
Pfin(0)), {0, 1}(∈ Pfin(2))}. Then,op{} and op{0,1} are the
same as the graph constructors{} and∪ in UnCAL, respectively.
The cases ofList and Mfin—which correspond to monoid and
commutative monoid, respectively—are quite similar.

For the finite probability monadDfin, let us see that the following
Σ becomes a signature:

Σ(2)
def
= {sr : 2→ [0, 1] | r ∈ [0, 1]} ⊆ Dfin(2)

Σ(n)
def
= ∅ (for othern)

where sr is defined assr(0)
def
= r and sr(1)

def
= 1−r. For

ϕ1, ϕ2 : S → [0, 1] in Dfin(S), o(sr)(ϕ0, ϕ1): S → [0, 1] in
Dfin(S) is as below:

o(sr)(ϕ0, ϕ1)(s) = r · ϕ0(s) + (1−r) · ϕ1(s).

Now recall that “singletons” inDfin(S), i.e., elements inreturn(S)
are given as the Dirac delta functionsδs as in Example2. Then
it is easy to see that the aboveΣ in fact becomes a signature: for
example,ϕ: N→ [0, 1] in Dfin(N) such that

ϕ(0) =
1

2
, ϕ(1) =

1

6
, ϕ(2) =

1

3
, ϕ(n) = 0 (for othern)

can be represented by algebraic operations from the aboveΣ as

ϕ =
1

2
δ0 +

1

6
δ1 +

1

3
δ2 =

1

2
δ0 +

1

2
(
1

3
δ1 +

2

3
δ2)

= o(s 1
2
)(δ0, o(s 1

3
)(δ1, δ2))

(or, = o(s 1
6
)(δ1, o(s 3

5
)(δ0, δ2)) etc.).

As this example, though a signature may be infinite, still may be
presentable in a meta-language for implementation. 2

7

A signature is enough to represent allT -algebraic graph con-
structors: For generic effectss ∈ T (n)(n={0, ..., n 1}) and
ti ∈ T (m)(i = 0, ..., n 1), the T -algebraic graph constructor
of the Kleisli compositionliftT (i 7→ ti)(s) ∈ T (m) agrees
with the composition of the correspondingT -algebraic graph con-
structorsops : (GfXY)n → GfXY andopti

: (GfXY)m → GfXY , i.e.,
ops ◦

⟨
opti

⟩
i∈n

: (GfXY)m → GfXY . Hence, by the definition of
signatures, anyT -algebraic graph constructor can be represented
as a finitely many times iterated composition ofT -algebraic graph
constructors of some function symbols in a signature.

Thus, though syntax ofλT
FG depends on the choice of signatures

of T , the expressive power ofT -algebraic graph constructors is the
same regardless of the choice.

As an important remark, the above definition ofT -algebraic
graph constructors gives us equational theories forT -algebraic
graph constructors for free.T -algebraic graph constructors are
defined through the monad morphismγ : T → TG , so theT -
algebraic graph constructors obey the same axioms as those of the
algebra ofT . For example, finite powersets are free algebras of
upper semilattices; hence, the graph constructors{} and∪ sat-
isfy all axioms of upper semilattices: i.e., associativity, unitality,
commutativity, and idempotency. Moreover, sinceγ is monic, the
converse, a kind of completeness, also holds.

3.2.3 Full Representability of Finite Graphs
The next proposition is the most important property of graph

constructors.

Proposition 11 (Full Representability of Finite Graphs). Let
T be a finitary monad onSet which has an extension forε-
elimination. Any finiteT -graph can be represented up to bisimi-
larity as finitely many applications of the graph constructors.2

Here we give a simple proof of the above proposition using the
notion of markers; this proof is a generalization with monads of
an idea explained by example in [6]. However, the use of mark-
ers is not essential; for a naive and less simple proof, see [2, Ap-
pendix D].

Before the proof, we define1-step unfoldingfunction

uf : GfY → T (Lϵ×GfY +Y).

First, for a graphG = (V,B, I) ∈ GfXY , and a nodev ∈ V , we
define

G|v
def
= (V,B, {& 7→ v}) ∈ GfY (3)

thus, we have a functionG|(-) : V → GfY . Then for G =
(V,B, I) ∈ GfY ,

uf (G)
def
= T (Lϵ×(G|(-))+Y)(B(I(&))).

The functionuf is strong bisimulation generic; taking the quo-
tientGfY /∼s , the function

uf /∼s : GfY /∼s → T (Lϵ×(GfY /∼s)+Y)

induced fromuf is nothing but the coalgebra structure offinal
locally finite coalgebra[1, 20]. Using [1, Theorem 3.3] and [20,
Corollary III.15], we can show that for any finitary monadT ,
uf /∼s is isomorphic.

Let us define the inverse-up-to-strong-bisimilarity ofuf :

uf -1 : T (Lϵ×GfY +Y)→ GfY ,

i.e.,uf -1 is also strong bisimulation generic and the induced func-
tion uf -1/∼s becomes the inverse ofuf /∼s . This can be con-
structed just by our graph constructors:

uf -1 = t ◦ T ([s, s′])

where

s
def
= ⟨(-):(-)⟩: Lϵ×GfY → GfY ,

s′
def
= ⟨-⟩: Y → GfY ,

and

t
def
= µTG

Y ◦ γGfY
: T (GfY)→ GfY (4)

(µTG
Y

def
= liftT

G
(idTG(Y))).

Note that sinceT is finitary, for any elementx ∈ T (GfY), there ex-
ist s ∈ T (n) andn-number of graphsGi—i.e.,G(-) : n → GfY —
such thatx = T (G(-))(s). Then,

t(x) = (µTG
Y ◦ γGfY

◦ T (G(-)))(s)

= (µTG
Y ◦ TG(G(-)) ◦ γn)(s)

= (liftT
G
(G(-)) ◦ γn)(s)

= γn(s) @oplus(G(-))

= ops(G0, ..., Gn 1).

(naturality ofγ)

(by monad axioms)

(def. of liftT
G
)

(def. of op)

Hencet(x) is defined with theT -algebraic graph constructors. For
example, whenT = List ,

t = foldr(++, []): List(GfY)→ GfY .

On the aboves, precisely,s(ε,G) = ⟨ε : G⟩ is not a representation
by graph constructors, because an expression⟨a : e⟩ is not allowed
in λT

FG whena = ε. For the case, in the above definition, replace
such⟨ε : e⟩ with e, which is bisimilar to⟨ε : e⟩.

Now let us give the proof of Proposition11.
PROOF. Let G = (V,B, I) be a finite graph inGfXY . First we

prepare a marker&v for each nodev, then we write&V for the set
of the markers, and definef : V → &V asf(v) = &v . Then for
eachv,

Gv
def
= uf -1

(
T
(
Lϵ×(⟨-⟩ ◦ f)+Y

)(
B(v)

))
∈ G&V +Y

can be represented by graph constructors. Then

⌊f ◦ I⌋@cycle
(
⊕

v∈V
&v := Gv

)
∈ GXY

is bisimilar to the original graphG. 2

For example, for the graphG in Example1,

G1 = ⟨d : ⟨&2 ⟩⟩++ ⟨a : ⟨&4 ⟩⟩
G2 = ⟨c : ⟨&3 ⟩⟩
G3 = ⟨d : ⟨&2 ⟩⟩
G4 = ⟨b : ⟨&3 ⟩⟩++ ⟨&y⟩,

thenG is bisimilar to

⟨&1⟩@cycle
(
(&1 :=G1)⊕(&2 :=G2)⊕(&3 :=G3)⊕(&4 :=G4)

)
.

3.2.4 The Need of Monad Extensions forε-elimination
So far, we have seen the importance of thefinitarity of a monad

T for finite-graph transformation calculusλT
FG. Here, we explain

why we need to care with the phenomenon of occurring infinite
width in this paper and why we did not need to take such special
care in the case of the original UnCAL forPfin-graphs.

WhenT is finitary and has an extensionT ′ for ε-elimination, if
we want to defineε-elimination only forfinite T -graphs, without
loss of generality, we can replace the extensionT ′ with its finitary
part T ′|fin:

T ′|fin(S)
def
=

∪
S′⊆S, S′: finite

T ′(S′).

8

(See AppendixA for details.)
For unordered graphs,(Pcnt)|fin is equal toPfin; thus, we do not

needPcnt andε-elimination does not produce infinite width. This
is the reason why we did not need to consider infinite width for
UnCAL.

For ordered graphs,(CList)|fin(S) consists of such countable
lists l that the number of elements ofS that occur inl are finite.
Hence, still we can not avoid the notion of a countable linear order,
i.e., infinite width, for even finite ordered graphs havingε-edges.
(For the details on ordered graphs, see [14, 2].)

Also on the other two examplesMfin andDfin, T ′|fin does not
become the originalT : i.e.,

(Mcnt)|fin(S) = {ϕ: S → N∪{∞} | ϕ−1(N−{0}) is finite}
(SubDcnt)|fin(S) =

{ϕ: S → [0, 1] | ϕ−1((0, 1]) is finite,Σxϕ(x) ≤ 1}.

However, in these cases,T ′|fin are easily representable on comput-
ers differently from the case of infinite-width ordered graphs.

3.3 Structural Recursion
Now, let us define structural recursion forT -graphs, which plays

a leading role in transformations ofλT
FG. We again show the typing

rule for structural recursion:

Γ, l:Label, g :GY ⊢ e: GZ
Z Γ ⊢ e′ : GX

Y

Γ ⊢ srec(λ(l, g).e)(e′): GZ×X
Z×Y

WhenT = Pfin, the structural recursionf = srec(λ(l, g).e)
satisfies the following characteristic equations, where we consider
single-rooted case for simplicity.

f({}) = {}
f(g1 ∪ g2) = f(g1) ∪ f(g2)
f(⟨l : g⟩) = e(l, g) @f(g)
f(⟨&y⟩) = ⌊&z 7→ (&z ,&y)⌋.

By regarding the above equations as an recursive definition for in-
finite trees, the above equations serve as a definition off to be
a function which inputsfinite graphs and outputsinfinite graphs.
However, the outputs off are in fact (bisimilar to)finite graphs,
and this is proved by using the following bulk semantics off .

Now, we give a definition of the bulk semantics, explaining with
Figure5. In Figure5, in each step, gray parts show parts unchanged
from the previous step. A marker above a node is an input marker
and markers below a node mean output markers. Each box with
bold frame is itself a graph, while each dotted box—a part of a
graph—has no meaning, just hints that it was a graph before.

Briefly explaining, with bulk semantics, we first calculate the ap-
plication of a given input functione to each pair of an edge and its
following subgraph, as the graph (b) in Figure5; though the ex-
ample ofe in the figure does not use the second argument for sim-
plicity of explanation. After that, we connect the results in keeping
with the shape of the original graph by usingε-edges, which results
in the graph (f) in Figure5.

Definition 12 (Bulk Semantics of Structural Recursion). Let T
be a finitary monad onSet. For a functione: L×GfY → GfZZ ,
a structural recursion functionsrec(e): GfXY → GfZ×X

Z×Y is de-
fined through the following steps. Before that, we extende to
ē: Lϵ×GfY → GfZZ which maps additionally(ε, _) to the “identity
graph”⌊idZ⌋ ∈ GfZZ (see the upper leftmost picture in Figure5).
In the following, the steps from (a) to (f) correspond to those in
Figure5.

(a) [Input of srec(e)]. Let us takeG = (V,B, I) ∈ GfXY .

(b) [Relabeling by e]. Let us definẽe: Lϵ×V → GfZZ as ē ◦
(idLϵ×G|(-)), whereG|(-) : V → GfY is defined as Equa-
tion (3). Then, we construct a new branching functionB1

whose labels are graphs inGfZZ : B1 is defined as the compo-
sition of

V
B−→ T (Lϵ×V+Y)

T (⟨ẽ,π2⟩+idY)−−−−−−−−−→ T (GfZZ×V+Y).

(c) [Storing target nodes in output markers and duplicating
original output markers]. LetB2 be the composition of the
following functions

V
B1−−→ T (GfZZ×V+Y)

T ([p,q])−−−→ T (GfZZ×V +Z×Y)

wherep andq are the obvious functions:

p(g, v)
def
= g @⌊&z 7→ in l((&z, v))⌋

q(&y)
def
= ⌊&z 7→ inr ((&z,&y))⌋.

(d) [Connecting horizontally by T -algebraic graph construc-
tors]. Now GfY has the algebraic structuretY defined in
Equation (4) after Proposition11, and we can regard input

marker sets as power throughoplus : (GfY)X
∼=−→ GfXY , so

we have the obvious power algebra structuret
(X)
Y on GfXY ,

i.e., the composition of

T (GfXY) −→ T (GfY)X
(tY)X−−−−→ GfXY .

Then, letB3 be the composition of

V
B2−−→ T (GfZZ×V +Z×Y)

t
(Z)
Z×V +Z×Y−−−−−−−−→ GfZZ×V +Z×Y .

(e) [Disjoint union by ⊕]. Using the bijective correspondence

oplus : (V→GfZZ×V +Z×Y)
∼=−→ GfZ×V

Z×V +Z×Y ,

we obtain a graphG′ def
= oplus(B3) ∈ GfZ×V

Z×V +Z×Y .

(f) [Connecting vertically by cycle and input marker re-
naming]. Finally, we define

srec(e)(G)
def
= ⌊idZ×I⌋@ cycle(G′) (∈ GfZ×X

Z×Y).
2

We remark that the finitarity of a monadT is used at the step (d)
for the algebratY . The above definition works if we replace allGf
with G; then,T does not need to be finitary.

The above semantics can be implemented in an obvious way (a
hint for implementation can be found in [14]). Our implementation
for unordered graphs and ordered graphs in OCaml can be found at
http://www.biglab.org/src/lambdaFG/ .

For generic implementation parameterizing monads, in a meta
language we define a class of monads-with-signatures with three
methods: a signatureg : Σ→T (N), an arity functiona: Σ→N, and
fold: ∀S.(

∏
s∈Σ(S

a(s)→S))→(T (S)→S). In, e.g., Haskell, the

dependent type
∏

s∈Σ(S
a(s)→S) can be replaced with a larger

typeΣ→(SN→S), since there is a right inverse of the projection
SN→Sa(s), i.e.,idSa(s)×⊥: Sa(s)×1→ Sa(s)×SN ∼= SN.

Finally, we give an example of queries using the structural recur-
sion; for more examples, see [6, 15].

Example 13. Consider an ordered graph representation of books.
Since “sections” are ordered and there are some reference links in
books, we can see books as ordered graphs. The following struc-
tural recursiontoc, which is adapted from [25], computes the table

9

http://www.biglab.org/src/lambdaFG/

01

2b

a

&y

(a) (b)

&z1

&

&z1 &z2
a

01

2
&y

&

e(a,_):=

0 1

&z1 &z2

&z1 &z2

e(b,_):=

0 1

&z1 &z2

&z1 &z2
0 1

a’

2 b’

e(ε,_):=
_

&z1 &z2

&z1 &z2

0 1
a’

&z1

&z1 &z2
0 1

2 b’

&z1 &z2

&z1 &z2
0 1
a’

&z1 &z2

&z1 &z2
0 1

(&z1,2)(&z2,2)

&z1 &z2
0 1
a’

(&z1,1)(&z2,1)

&z1 &z2
0 1

(&z1,1)

&z1 &z2
0 1

2 b’

(&z1,2)(&z2,2)

&z1 &z2
0 1
a’

(&z1,&y)(&z2,&y)

&z1 &z2
0 1

(&z1,2)(&z2,2)
0 1
a’

(&z1,1)(&z2,1)
0 1

0 1

2 b’

(&z1,2)(&z2,2)
0’ 1’

a’

(&z1,&y)(&z2,&y)
0’ 1’

&z1 &z2

&z1 &z2

&z1 &z2

(&z1,2) (&z2,2)
(0,1) (1,1)

a’

(&z1,1)(&z2,1)
(0,0) (1,0)

(0,2) (1,2)

(2,2) b’

(&z1,2) (&z2,2)
(0’,0) (1’,0)

a’

(&z1,&y)(&z2,&y)
(0’,2) (1’,2)

(&z1,2) (&z2,2)

(&z1,1) (&z2,1)

(&z1,0) (&z2,0)

(&z1,1)(&z1,1)

&z1 &z2

&z1 &z2

&z1 &z2

(&z1,1)(&z2,1)

(&z1,0) (&z2,0)

(&z1,2) (&z2,2)

(0,1) (1,1)
a’

(0,0) (1,0)

(0,2) (1,2)

(2,2)
b’

(0’,0) (1’,0)
a’

(&z1,&y) (&z2,&y)
(0’,2) (1’,2)

(&z1,2) (&z2,2)

(&z1,1) (&z2,1)

(&z1,0) (&z2,0)
(&z1,&) (&z2,&)

B2 (1)
(c)

(d)(e)(f)

srec(e)

B2 (2)

B2 (0)

B3 (1)

B3 (0)

B3 (2)

Figure 5: Bulk Semantics of Structural Recursion: Example with Ordered Graphs

of contents of books in which sections can be arbitrarily nested:

toc(db) = srec(λ(l, g). if l=section

then ⟨section : (get_title(g) ++ ⟨&⟩)⟩
else ⟨&⟩) (db)

where the functionget_title results in the title of the section:

get_title(g) = srec(λ(l1, g1). if l1=title

then ⟨title : srec(λ(l2, g2).⟨l2 : []⟩) (g1)⟩
else []) (g)

2

3.4 Bisimilarity for Higher Order Functions
So far we have given the semantics with(V,B, I) form at the

equality level. In the rest of this section, we consider semantics at
the bisimilarity level.

In Section2, we gave the semantic equivalence for graph types
GX

Y , i.e., the bisimilarity. SinceλT
FG has higher order functions,

andsrec is a higher order function, we have to extend the seman-
tic equivalence for base types to function types. It is well known
that if we lift an equivalence relation to function types we need to
switch from the notion of an equivalence relation to that of apartial
equivalence relation, i.e., an equivalence relation on some subset of
the original set. This is because, now, not all functions onGfXY are
bisimulation generic, so we have to cut out thesubsetconsisting of
bisimulation generic functions.

Let us give the formal definition. For the typesσ of λT
FG, we

define binary logical relations∼σ on [[σ]]. Whenσ = GX
Y , ∼GX

Y

is the bisimilarity onGfXY ; for the other base typesσ, ∼σ are just
the equality relations. Whenσ = σ1 × σ2, we define a binary

relation∼σ on [[σ]]
def
= [[σ1]]× [[σ2]] as

(x1, x2) ∼σ (x′
1, x

′
2)

def⇐⇒ (x1 ∼σ1 x′
1) ∧ (x2 ∼σ2 x′

2).

Whenσ = σ1 → σ2, we define a binary relation∼σ on [[σ]]
def
=

[[σ1]]→ [[σ2]] as

f ∼σ f ′ def⇐⇒ ∀x, x′ ∈ [[σ1]]. (x ∼σ1 x′ ⇒ f(x) ∼σ2 f ′(x′)).

Then for any typeσ,∼σ becomes a partial equivalence relation on
[[σ]], i.e., an equivalence relation on the subset

|∼σ|
def
= {x ∈ [[σ]] | x ∼σ x}.

We call a functionf : [[σ1]] → [[σ2]] (higher order) bisimulation
genericif f is in |∼σ1→σ2 |. (Note that this kind of lifting of se-
mantic equivalence to function types is possible for any equivalence
relation such as strong bisimilarity, graph isomorphism etc.)

Then from the Basic Lemma of logical relation, interpretations
of all the terms are bisimulation generic if interpretations of all the
constants are bisimulation generic; as a result of the consequent of
this implication, we obtain a model ofλT

FG in the cartesian closed
categorySet. (See the textbook [22] for the technique of logical
relation.) In the rest of this paper, we prove that the interpretations
of all the constants ofλT

FG are bisimulation generic.

3.5 Bisimulation Genericity of Terms ofλT
FG

First we show the bisimulation genericity of the graph construc-
tors.

Proposition 14 (Bisimulation Genericity of Graph Constructors).
Let T be a finitary monad having an extension forε-elimination.
All the graph constructors are bisimulation generic. 2

PROOF. For a constructorf , prove thatε-elim(f(G1, ..., Gn))
is strongly bisimilar toε-elim(f(ε-elim(G1), ..., ε-elim(Gn))).
This reduces the bisimulation genericity in the statement to strong-
bisimulation genericity, which is obvious. 2

Next, let us consider structural recursion. The result below is
stronger than what is proved in [6], even whenT = Pfin, because

10

here bisimulation genericity is proved also on the first argument
e, while in [6], it is proved only on the second argumentG. This
is the key point of our extension from UnCAL to the higher order
calculusλPfin

FG .

Theorem 15 (Bisimulation Genericity of Structural Recursion).
Let T be a finitary monad having an extension forε-elimination
T ′. Structural recursionsrec is bisimulation generic, i.e., if

e1 ∼ e2 : L×T GfY → T GfZZ , and G1 ∼ G2 ∈ T GfXY ,

then

srec(e1)(G1) ∼ srec(e2)(G2) ∈ T GfZ×X
Z×Y .

PROOF. Basically we want to prove in a similar way to the proof
of Proposition14, but there is a bit subtle problem. Though the
following might be expected to hold,

ε-elim(srec(e)(G)) ∼s ε-elim(srec(ε-elim ◦ e)(ε-elim(G)))

in fact, there is a type error: i.e., nowε-elim ◦ e is a function of the
typeL×T GfY → T ′ GfZZ so we can not applysrec with respect
to eitherT norT ′. This can be solved as follows.

First, it is easily shown that the structural recursion is defined
“uniformly” on monads: Let

i
def
= ι GfXY : T GfXY → T ′ Gf

X
Y ,

whereι GfXY is defined as just the restriction ofι GXY . For

e: L×T GfY → T GfZZ ,

e′ : L×T ′ GfY → T ′ Gf
Z
Z ,

G ∈ T GfXY ,

if e′ ◦ (L×i) = i ◦ e then

srecT
′
(e′)(i(G)) = i(srecT (e)(G)).

Here the equality= means the exact equality rather than strong
bisimilarity or bisimilarity.

This reduces the setting of the theorem to the case in whichT is
not necessarily finitary andι: T → T ′ is the identity—i.e.,T (=
T ′) is an arbitrary monad whose Kleisli category has an iteration
operator—, so thatε-elim is closed inT GfXY . This is because, for
any

e1 ∼ e2 : L×T GfY → T GfZZ ,
there are

e′1 ∼ e′2 : L×T ′ GfY → T ′ Gf
Z
Z

such thate′i ◦ (L×i) = i ◦ ei. We can take suche′i by using some
bisimulation generic retractioni∗ of i. Suchi∗ can be defined in
an ad hoc way3: Let G0 be an arbitrary fixed graph inT GfY . For

G′ ∈ T ′ GfY , if G′ is in T GfY , theni∗(G′)
def
= G′, else ifG′ is

bisimilar to some graphG in T GfY , theni∗(G′)
def
= G (G should

be chosen), elsei∗(G′)
def
= G0.

Now, in this reduced setting, we will prove the goal in a similar
way to Proposition14. First, we can prove the commutativity of
srec with ε-elim:

ε-elim(srec(e)(G)) ∼s ε-elim(srec(ε-elim ◦ e)(ε-elim(G))).

Then, for concluding the proof, it is enough to show the strong-
bisimulation genericity ofsrec (Lemma16). 2

3 For one who wants non-ad-hoc way, if we assume that the given
function ei is the interpretation of some termti in λT

FG, then we
can get the desirede′i as the interpretation ofti in λT ′

FG.

Lemma 16. The structural recursionsrec is strong-bisimulation
generic: i.e., fore1 ∼s e2 : L×GfY → GfZZ and forG1 ∼s G2 ∈
GfXY , the following holds:

srec(e1)(G1) ∼s srec(e2)(G2) (∈ GfZ×X
Z×Y).

PROOF. Basically, this is proved straightforwardly according to
the steps in Definition12. At the step(f) in Definition 12, we used
cycle; accordingly in this proof, we use the uniformity of the iter-
ation operator. For details, see AppendixB. 2

4. CONCLUDING REMARK
We presented a parameterized calculusλT

FG that is an extension
of the lambda calculus with finite graph types, the graph construc-
tors, and the structural recursion, for generalizing and extending
UnCAL [6]. We presented the semantics ofλT

FG that has a suitable
bisimilarity accommodatingε-edges as well as the termination and
finiteness preserving properties. A further extension ofλT

FG is pre-
sented in [2].

This paper is based on our previous work [14]. As explained
in the introduction, in the previous paper a new calculus—named
asλFG in the previous paper—for ordered graphs was introduced.
The calculusλFG is not the same asλList

FG in the current paper; here,
we give the comparison of the current and the previous papers. In
λFG, the structural recursion is extended from that in the current
λList
FG , so that it can transform sibling direction of graphs; hence the

expressive power ofλFG is higher thanλList
FG . Therefore to extend

current work with such sibling transformations is important future
work. Also, in the previous work we focused on ordered graphs,
and gave some decidability results on ordered graphs. Moreover, in
the current paper the existence of a monad and an iteration operator
is used as an assumption; while, in the previous paper to define the
countable list monad and the iteration operator for the monad was
a main contribution.

The database community has undertaken a lot of work on graph
transformation languages, but most of it has been on graphs up to
isomorphism (or equality); there has been little work on graphs
up to bisimilarity with considering bisimulation genericity. In [3],
however, new semantics for the structural recursion of UnCAL was
given.

There has been a lot of work on structural recursion for specific
kinds of graphs, such as graphs represented by trees with specific
pointers [11, 8], and graphs represented by trees with embedded
functions [9, 7]. However, they do not ensure all of the bisimulation
genericity, terminating property, and finiteness preserving property,
which are our original goals as explained in the introduction.

In coalgebra theory, i.e., the study of infinitary/cyclic structures,
some studies have focused on the finiteness of graphs. In [5, 28],
for every Kripke polynomial endofunctor or quantitative functorF ,
a systematic way of giving a syntax fully representing all finiteF -
coalgebras and a sound and complete equational theory for bisimi-
larity were given. The differences between that study and ours are
as follows: (i) The two classes of endofunctors—quantitative func-
tor and ours with arbitrary finitary monads—are not comparable;
especially, our leading exampleList(Lϵ×(-)+Y) is not a quan-
titative functor. (ii) Our equational theory is restrictive while the
equational theory given in that study captures completely the bisim-
ilarity. (iii) Their study does not treatε-edges, and is not a study
for transformations. (iv) The approaches to syntax are different:
The both can express arbitrary finite coalgebras, but there seems no
compositionaltranslations between their and our graph representa-
tion systems, and comparison of expressive power of open terms is
not obvious. Also, their approach is in a guarded style, by which

11

the unique fixed point operator can be used; while ours does not
require guardedness, and require an iteration operator instead.

In [1, 20], the authors studied categorical properties of the set of
finite coalgebras, and characterized it as afinal locally finite coalge-
bra. The class of endofunctors for coalgebras in that study is wider
than ours; some of the results are applied and inspire our work. In
that study, there is no consideration for finiteness-preserving struc-
tural recursion. The finality among locally finite coalgebras is a
kind of corecursion and has a similar problem to that of corecur-
sion; i.e., to assure finiteness-preservation, we have to check local-
finiteness of infinite graphs, automation of which seems difficult.

The general treatment forε-edges with iteration operators in the
current paper was hinted at in [16]. Although there was no con-
sideration ofε-edges itself in that study, the author showed that
the trace semantics for some kinds of coalgebra induces iteration
operators by forgetting the length of trace paths; the resulting itera-
tion operators can be regarded asε-elimination. The countable list
monad is not treated in that paper; it does not satisfy the assumption
of the theorem in that paper.

In [19], the authors studiedε-elimination for weighted automata.
The kinds of automata treated in their paper are parametrized by
certain semirings, and do not include our ordered case (List-
graphs). Also, their approach to specifying weighted automata
is different from ours. They define first some class of weighted
ε-automata, and then they restrict it to “valid” ones with some pro-
cedure; while our graphs are “valid” from the beginning. As a main
contribution, they give an algorithm for removingε-transitions. It
seems interesting future work to compare their and our general
automaton/graph models and merge each advantages.

5. ACKNOWLEDGMENTS
We thank Ichiro Hasuo and Kazutaka Matsuda for useful com-

ments. The research was supported in part by the Grand-Challenging
Project on the “Linguistic Foundation for Bidirectional Model
Transformation” of the National Institute of Informatics and KAK-
ENHI No. 23700047, 22300012, 25240009, and 23220001.

6. REFERENCES
[1] J. Adámek, S. Milius, and J. Velebil. Iterative algebras at

work. Mathematical. Structures in Comp. Sci.,
16(6):1085–1131, Dec. 2006.

[2] K. Asada, S. Hidaka, H. Kato, Z. Hu, and K. Nakano.
Parameterized graph transformation languages with monads.
Technical Report GRACE-TR-2012-07, GRACE Center,
National Institute of Informatics, 2012.

[3] A. A. Benczúr and B. Kósa. Static analysis of structural
recursion in semistructured databases and its consequences.
In ADBIS, volume 3255 ofLNCS, pages 189–203. Springer,
2004.

[4] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In
In International Summer School on Applied Semantics,
APPSEM 2000, pages 42–122. Springer-Verlag, 2000.

[5] M. Bonsangue, J. Rutten, and A. Silva. Algebras for Kripke
polynomial coalgebras. InLICS, IEEE, Computer Science
Press, pages 49–58, 2009.

[6] P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query
language and algebra for semistructured data based on
structural recursion.The VLDB Journal, 9(1):76–110, 2000.

[7] B. C. d. S. Oliveira and W. R. Cook. Functional
programming with structured graphs. InICFP, pages 77–88.
ACM Press, 2012.

[8] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can
count on. InPOPL’04, pages 135–146. ACM Press, 2004.

[9] L. Fegaras and T. Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer
space). InPOPL, pages 284–294. ACM Press, 1996.

[10] E. Haghverdi.A Categorical Approach to Linear Logic,
Geometry of Proofs and Full Completeness. PhD thesis,
University of Ottawa, 2000.

[11] M. Hamana. Initial algebra semantics for cyclic sharing
structures. InTLCA, LNCS 5608, pages 127–141, 2009.

[12] M. Hasegawa. The uniformity principle on traced monoidal
categories.Electr. Notes Theor. Comput. Sci., 69:137–155,
2002.

[13] I. Hasuo, 2011. personal communication.
[14] S. Hidaka, K. Asada, Z. Hu, H. Kato, and K. Nakano.

Structural recursion for querying ordered graphs. InICFP
2013, to appear, Mar. 2013.

[15] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
K. Nakano. Bidirectionalizing graph transformations. In
ICFP 2010, pages 205–216. ACM Press, 2010.

[16] B. Jacobs. From coalgebraic to monoidal traces.Electr.
Notes Theor. Comput. Sci., 264(2):125–140, 2010.

[17] Y. Kakutani. Duality between call-by-name recursion and
call-by-value iteration. InCSL, volume 2471 ofLNCS, pages
506–521. Springer, 2002.

[18] G. M. Kelly. Structures defined by finite limits in the
enriched context, I.Cahiers Topologie Géom. Différentielle,
23(1):3–42, 1982.

[19] S. Lombardy and J. Sakarovitch. The removal of weighted
ϵ-transitions. InImplementation and Application of
Automata, volume 7381 ofLNCS, pages 345–352. Springer,
2012.

[20] S. Milius. A sound and complete calculus for finite stream
circuits. InLICS, pages 421–430. IEEE Computer Society,
2010.

[21] R. Milner.Communicating and Mobile Systems: the
π-calculus. Cambridge University Press, 1999.

[22] J. C. Mitchell.Foundations for programming languages.
Foundation of computing series. MIT Press, 1996.

[23] E. Moggi. Computational lambda-calculus and monads. In
LICS, pages 14–23. IEEE Computer Society, 1989.

[24] G. Plotkin and J. Power. Algebraic operations and generic
effects.Applied Categorical Structures, 11:69–94, 2003.

[25] E. L. Robertson, L. V. Saxton, D. V. Gucht, and
S. Vansummeren. Structural recursion as a query language
on lists and ordered trees.Theory of Computing Systems,
44(4):590–619, 2009.

[26] J. Rutten. Universal coalgebra: a theory of systems.
Theoretical Computer Science, 249(1):3 – 80, 2000.

[27] I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and
K. Nakano. Toward bidirectionalization of ATL with
GRoundTram. InICMT, volume 6707 ofLNCS, pages
138–151. Springer, 2011.

[28] A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. M.
Rutten. Quantitative Kleene coalgebras.Inf. Comput.,
209(5):822–849, 2011.

[29] A. K. Simpson and G. D. Plotkin. Complete axioms for
categorical fixed-point operators. InLICS, pages 30–41.
IEEE Computer Society, 2000.

[30] A. Sokolova.Coalgebraic Analysis of Probabilistic Systems.
PhD thesis, TU Eindhoven, 2005.

12

APPENDIX

A. FINITARY MONAD EXTENSION FOR
ε-ELIMINATION

For a monadT ′ with an iteration operatoriter in SetT ′ , T ′|fin
may not have an iteration operator (asPcnt|fin = Pfin). Still, we
can defineε-elimination for finiteT ′|fin-graphs so that the result
graph is equal to one obeying Definition5.

Let G = (V,B, I) be a finiteT ′|fin-graph inT ′|fin Gf
X

Y
. Since

V is finite andT ′|fin is finitary by definition, there exists a finite
subsetL′ ⊆ L and a functionB′ such that the following diagram
commutes.

V
B //

B′ --ZZZZZZZ
ZZZZZZZZ

ZZZZZZZZ
ZZ T ′|fin(Lϵ×V+Y)

∼= // T ′|fin(V+(L×V+Y))

T ′|fin(V+(L′×V+Y))
?�

OO

NowV+(L′×V+Y) is a finite set; hence,T ′|fin(V+(L′×V+Y))
= T ′(V+(L′×V+Y)). We can therefore apply the iteration op-
eratoriter toB′; the result is

V
iter(B′)−→ T ′(L′×V+Y) = T ′|fin(L′×V+Y)

sinceL′×V+Y is a finite set. Let us defineB′′ as the composition
of

V
iter(B′)−→ T ′|fin(L′×V+Y) ↪→ T ′|fin(Lϵ×V+Y)

and defineε-elimfin(G)
def
= (V,B′′, I) in T ′|fin Gf

X

Y
.

Then, for a finiteT ′|fin-graphG, by the inclusionT ′|fin ↪→ T ′,
we can regardG also as aT ′-graph. It can be easily checked
that ε-elim(G) in Definition 5 is exactly equal to the above
ε-elimfin(G) regarded as aT ′-graph.

For a finitary monadT with an extension forε-eliminationT ′,
the condition thatT is finitary can be used to show thatι: T → T ′

can be decomposed into the inclusionT ′|fin ⊆ T ′ and some (nec-
essarily injective and unique) monad morphismιfin : T → T ′|fin.
Then(T, T ′|fin, ιfin, ε-elimfin) becomes a “finitary monad exten-
sion for ε-elimination” which is almost a monad extension for
ε-elimination except for thatε-elimfin can performε-elimination
only for finite graphs.

B. STRONG-BISIMULATION GENERIC-
ITY OF STRUCTURAL RECURSION

We give a proof of Lemma16—the strong-bisimulation generic-
ity of the structural recursion.

We will use the following notions and notations in the proof of
the lemma. We writeR : A1 p A2 for a relationR ⊆ A1×A2;
e.g., the diagram on the left below means that, ifa1 Ra2, then
f1(a1)S f2(a2).

A1
_R

f1 // B1
_S

A2
f2

// B2

X1

_S

I1 // V1

_R

B1 // T (Lϵ×V1+Y1)
_T (Lϵ×R+T)

X2
I2

// V2
B2

// T (Lϵ×V2+Y2)

For S : X1 p X2 andT : Y1 p Y2, let us define the relation
∼s

S
T : GfX1

Y1
p GfX2

Y2
: for Gi ∈ GfXi

Yi
, G1 ∼s

S
T G2 if there exists a

relationR : V1 p V2 such that the right diagram above commutes
(i.e., each of the two squares holds). We write simplyX for the
diagonal relation betweenX andX, then note that∼s

X
Y : GfXY p

GfXY is the same as∼s.

PROOF. Let Gi be (Vi, Bi, Ii). FromG1 ∼s G2, there exists
R : V1 p V2 such that the following diagram commutes.

X
I1 // V1

_R

B1 // T (Lϵ×V1+Y)
_T (Lϵ×R+Y)

X
I2

// V2
B2

// T (Lϵ×V2+Y)

(5)

Next, from the assumption thate1 ∼s e2, the following diagram
commutes.

V1
B1 //

_R

T (Lϵ×V1+Y)
T (⟨ẽ1,πr ⟩+idY)

//
_T (Lϵ×R+Y)

T (GfZZ×V1+Y)
t◦T ([p,q])

//
_T (∼s

Z
Z×R+Y)

GfZZ×V1+Z×Y

_∼s
Z
Z×R+Z×Y

V2
B2

// T (Lϵ×V2+Y)
T (⟨ẽ2,πr ⟩+idY)

// T (GfZZ×V2+Y)
t◦T ([p,q])

// GfZZ×V2+Z×Y

Then, for the composition of the above, the transposition ofVi by
oplus yields

1
G′

1 // GfZ×V1
Z×V1+Z×Y

_∼s
Z×R
Z×R+Z×Y

1
G′

2

// GfZ×V2
Z×V2+Z×Y

i.e., G′
1 ∼s

Z×R
Z×R+Z×Y G′

2. (6)

After that, we can show—see the remark below—that

cycle(G′
1) ∼s

Z×R
Z×Y cycle(G′

2), (7)

and from the left square of the diagram (5) we get

⌊idZ×I1⌋@cycle(G′
1) ∼s

Z×X
Z×Y ⌊idZ×I2⌋@cycle(G′

2)

i.e.,srec(e1)(G1) ∼s srec(e2)(G2). 2

We give a remark on Equation (7). As seen above,TG(Y) =
GfY (and alsoGY) becomes a monad; then,cycle becomes an it-
eration operator in the Kleisli category. Furthermore, the iteration
operator is uniform on morphisms that come from the Kleisli cat-
egorySetT via γ, if the iteration operator forT is uniform. The
above derivation of Equation (7) from Equation (6) is just theuni-
formity principleon relations [12]. (Since we need the uniformity
of cycle only on functions, so we need the uniformity ofiterT

only on functions as well.)

13

	Introduction
	Graph Model and Bisimilarity
	Graph Model of FGT
	Graph Equivalence in FGT: Bisimilarity with -elimination
	Generalization of Bisimilarity with Monad Extension

	Syntax and Semantics of FGT
	Syntax of FGT
	Graph Constructors
	Common Graph Constructors
	T-Algebraic Graph Constructors
	Full Representability of Finite Graphs
	The Need of Monad Extensions for -elimination

	Structural Recursion
	Bisimilarity for Higher Order Functions
	Bisimulation Genericity of Terms of FGT

	Concluding Remark
	Acknowledgments
	References
	Finitary Monad Extension for -elimination
	Strong-bisimulation Genericity of Structural Recursion

