A Parameterized Graph Transformation Calculus for Finite
Graphs with Monadic Branches

Kazuyuki Asada Soichiro Hidaka Hiroyuki Kato
The University of Tokyo National Institute of National Institute of
Informatics Informatics
Zhenjiang Hu Keisuke Nakano
National Institute of The University of

Informatics Electro-Communications
ABSTRACT 1. INTRODUCTION
We introduce a lambda calculug: for transformations ofinite Designing graph transformation languages is difficult in gen-

graphs by generalizing and extending an existing calculus UnCAL. eral, because graph structured data may have cycles and shared
Whereas UnCAL can treat only unordered grapk&; can treat nodes. There are three major difficulties: consistency, finiteness-
a variety of graph models: directed edge-labeled graphs whosepreservation, and termination of evaluation. The consistency indi-
branch styles are represented by mon@dsFor example \fq cates the same treatment of ‘equivalent’ graphs, where equivalence
can treat unordered graphs, ordered graphs, weighted graphs, probis usually specified by either bisimilarity or isomorphism. Graphs
ability graphs, and so on, by using the powerset monad, list monad, up to bisimilarity are equivalent to infinite trees, whereas graphs
multiset monad, probability monad, respectively. ¥i;, graphs up to isomorphism are “graphs as they look”. In this paper, we fo-
are considered as extension of tree data structures, i.e. as infinitecus on graphs up to bisimilarity for the application to querying tree
(regular) trees, so the semantics is given with bisimilarity. databases with cyclic references such as XML with IDREF. Ensur-
A remarkable feature of UnCAL anki, is structural recursion ing consistency requires that every graph transformatidmisisn-
for graphs, which gives a systematic programming basis like that ulation generic i.e., the transformation results of bisimilar graphs
for trees. Despite the non-well-foundedness of graphs, by suitably are bisimilar.
restricting the structural recursion, UnCAL ang. ensures that For finiteness-preservation, it means that every term maps finite
there is a termination property and that all transformations preservegraphs (graphs with finite number of nodes) to finite graphs; this
the finiteness of the graphs. The structural recursion is defined in aand the termination properties are important for graph query lan-
"divide-and-aggregate" way; "aggregation" is done by connecting guages. Full recursion, which is a typical way of constructing pow-
graphs withe-edges, which are similar to thetransitions of au- erful transformations, is not desirable, since the termination and
tomata. We give a suitable general definition of bisimilarity, taking finiteness-preservation do not hold. Structural recursion (fold) for
account ofe-edges; then we show that the structural recursion is inductive datatypes such as lists and finite trees naturally has both
well defined with respect to the bisimilarity. properties; however for graphs, because of the non-well-founded
nature, it is difficult to find such a structural recursion. Functions
defined by corecursion (unfold) terminate, but do not necessarily

Categories and Subject Descriptors return finite graphs.

D.3.2 [Programming Language§: Language Classifications— One prominent step to solve these problems was given in the
Specialized application languagds. 1 [Data Structures]: Graphs work of UnCAL [g]. Their structural recursion for graphs is suit-
and networks ably restricted from that for infinite trees so that the termination
and finiteness-preservation hold. The expressive power is less than
that of fold for finite trees, but it is still powerful enough to translate
General Terms an SQL-style graph query language—called UnQL—into UnCAL.
Language, Theory Moreover, they gave bulk semantics for the structural recursion,
which is “divide-and-aggregate” style semantics and enables par-
Keywords allel evaluation. The key to defining the structural recursion of

UnCAL is use ofe-edges, which work as shortcut like the
transitions of automata. Then the bulk semantics makes it easier
to prove the finiteness-preservation and termination properties.
UnCAL is used also as a basis for bidirectional graph transforma-
tion [15] and for model driven software engineerify].

However, there is a big restriction on UnCAL: graph models
of UnCAL are just unordered graphs, i.e., graphs whose branches
have no sibling order; while in real applications, there are many
graph models such as ordered graphs, weighted graphs, probabil-
ity graphs, etc. Though, when we generalize the graph model of
This is a full version of the paper to apper in Proc. of the 15th International Symposium UnCAL, we come across a subtle problem: how can we generally

on Principles and Practice of Declarative Programming (PPDP '13). ACM holds the (gafine the notion of bisimilarity for each graph model that has the
copyright of the definite version.

graph transformation, bisimilarity, structural recursion, graph alge-
bra, monad, epsilon edge

notion ofe-edg&

Additionally, we should point out that UnCAL has another weak
point. The structural recursion of UnCAL is a higher order function
like the fold for trees, but the bisimulation genericity of the struc-
tural recursion in UnCAL has been proved only on the first order
part, and UnCAL is formulated as just first order calculus, which
blurs how to extend UnCAL to richer type systems.

In previous work[L4], the authors studied how to modify the
graph model of UnCAL so that we can treat ordered graphs in a
similar way to UnCAL. There it is found thatedges of ordered
graphs may produce a subtle problenindinite widthon branches;
this problem does not occur in the case of unordered graphs. It
was resolved by proposing a new calculus for finite ordered graphs,
giving a new definition of bisimilarity for ordered graphs havirg
edges, and giving the semantics of the calculus for ordered graphs
The calculus is extended with higher order functions and formu-
lated as an extension of simply typed lambda calculus.

Along that line, in this paper we further generalize the graph
models, and propose a family of calchfi, which is parametrized
by monadsT’; each\L; can treat graphs whose branches are rep-
resented by a mondfl. For example, wheff is the finite powerset
monad,)\EG becomes UnCAL, precisely, UnCAL extended as a
simply typed lambda calculus. To introdud¢g, we generalize
all the features of UnCAL with monads: i.e., its graph models, its
graph constructors, and the structural recursion.

In Section2, we generalize the graph models from unordered
graphs toT-graphs, by using a mondtf (with some reasonable
assumption) to represent various branch styles. Wih&nthe list
monad, the finite multiset monad, and the finite probability distri-
bution monad, theff’-graphs are ordered graphs, weighted graphs,
and probability graphs, respectively. We also give a general defini-
tion of bisimilarity for T-graphs, taking-edges into account.

In Section3, we introduce the syntax and the semantics of the
lambda calculizhg. We give the definition of graph constructors,
and show that all finitd -graphs can be represented by those graph
constructors. Then, we give a simple definition of the bulk seman-
tics of the structural recursion foi.g, and we prove that all trans-
formations of\Lg are bisimulation generic. As well as generaliz-
ing with monads AL is extended from UnCAL with higher order
functions, which is not for free but due to that our main theorem—
bisimulation genericity of the bulk semantics—is stronger than the
corresponding theorem for UnCAlE]|.

In Sectiorwe discuss related work, which includes more detail
comparison betweekl, and the calculus iril4].

Our contributions are summarized as follows:

e We generalize the graph model of UnCAL with monads by
applying coalgebra theory; also we present a general def-
inition of semantic equivalence for graphs havigdges,
which is given by combination of ordinary bisimilarity and
e-elimination

We generally define graph constructors and structural recur-
sion for T-graphs, with identifying suitable assumptions on
the finiteness of” for the sake of practical use, which is dis-
cussed in Sectioa2.3and3.2.4

We show that any finitd’-graph can be constructed using
graph constructors; also we find and utilize several equa-
tional properties for graph constructors.

We extend semantic equivalence for graphs to higher order
functions and show the bisimulation genericity of structural
recursion as a higher order function, which enables us to re-

formulate UnCAL to more powerful and familiar style of cal-
culus, i.e., the simply typed lambda calcuhig;.

The reformulation makes it clear that we can further ex-
tend AL with familiar features such as coproduct, algebraic
datatypes, polymorphic types, dependent types, and so on.
In fact, although the current formulation af.; (and also
UNnCAL) does not include transformations for manipulating
the sibling direction—e.g., reversing the order of branches
of an ordered graph—we can add such transformations, us-
ing the above flexibility of extendingis. (SeelP] for the
details of such an extension for sibling transformations.)

GRAPH MODEL AND BISIMILARITY

First, we explain what kind of graphs thé.-terms can trans-
form. After that, we give the semantic equivalence of the graphs:
i.e., bisimilarity withe-elimination

2.1 Graph Model of \Z,

The graphs in\L are rooted, directed, and edge-labeled graphs.
Furthermore, the graph model df; has two notable features:
edgesandmarkers An e-edge represents a shortcut between the
two nodes; the shortcut works like thdransition in an automaton.
Nodes may be marked witimput and output markersthese are
used as interfaces to connect a graph to another grapkebges.
(This is done by@ andcycle as the dotted edges in Figlfieand
by srec as in Figurdgl)

Let us introduce the notion of &-graph, which hasT-kind of
branches”, for a mona@'. First, though, let us recall the notion
of a monad (in the Kleisli triple style): mmonadon Set is a triple
T = (T, return, lift) of functions

T: |Set| — |Set]
returng: S — T'(S) (S € |Set|)
lifts gt (S = T(S") = (T(S) = T(S") (8,5 € [Set|)

such that these satisfy certain axioms (&% for the axioms).

Example 1 (List Monad). The list functor List forms a monad
with the following monad structures:

[]

concat (map f xs)

return ()

lift f xs

whereconcat is to flatten a list of lists to a list.

O

Now, let us define the graph model. We u5¢o denote a set of
labelsand L. to denote the disjoint uniof U {e}. Let X andY
be finite sets ofmarkers we add the prefix.for meta-variables of
markers like&z. Then, ar'-graph(or justgraph) G is defined as a
triple (V, B, I) where

e V is a set ofnodes

e B:V — T(L.xV+Y) is abranch functionwhere an el-
ementz in L xV+Y (calleda branch is eitheran edge
Edge (I, v) or an output markeOutm (&), and

e [: X — V is a function, which determinesput nodes
(root9) of the graph.

In terms of coalgebra theory,B-graph is a coalgebr® of the
endofunctofl’ (L. x (-)+Y) equipped withl: X — ¥/, which can
be regarded as a generalized element (stat®). of

v = {1,2,3,4} The main difficulty with our definition of bisimilarity is the treat-
B(1) = [Edge(d,2),Edge(a,4)] ment ofe-edges. We first explaistrong bisimilarity in which we
B(2) = [Edge(c,3)] regard the labet as a usual label such as thosedn Then, we
B(3) = |[Edge(d,2)] definebisimilarity, which “skips”e-edges.
& B(4) = [Edge(b,3),0utm (&)] Note that our notion of bisimilarity for the invisible labels dif-
y & = 1 ferent fromweak bisimilarityfor the invisible labelr in the context
of process algebré@[l]. One purpose of our use efedges is to
Figure 1: Example of Ordered Graph postpone the calculations of the graph constructors, structural re-

cursion, and so on, but weak bisimilarity is unsuitable for expected
properties of such graph transformations: e.g., weak bisimilarity
Example 2 (Unordered/Ordered/Weighted/Probability Graphs). can not ensure the associativity of the graph construc{alefined

For the finite powerset mona#s,, Psn-graphs areunordered in the next section).
graphs which are (equivalent to) the graph model of UnCAL. Now, let us recall the notion of a bisimulation relation for any
List-graphs arerdered graph¢l4], where the branches are or- endofunctorl” on Set. First, we definaelational lifting £ of .
dered. An example of an ordered graph is shown in Filre For a relationR C VxV’, i.e., for an inclusion(r,r’): R <
Thefinite multiset monagbag monad) is defined ddsy,: VxV’, we obtain(F'(r), F(r')) : F(R) — F(V)xF(V'); then
def e the relationF'(R) C F(V)xF(V') can be defined as the image
Mpin(8) = {¢: SN | ¢~ (N—{0}): finite}. (F(r), F(r"))(F(R)). Next, for twocoalgebrasof F, i.e., two
Branches ofVs,-graphs have the bag semantics (rather than set functionsB: V. — F(V) and B": V' — F(V"), abisimulation
semantics ofPsy), i.e., multiplicity (calledweigh) of an identical relation R betweenB and B’ is a relationk C V' xV" such that
branch is not ignored. (BxB')(R) C F(R).

Thefinite probability distribution monads,, is defined as Definition 3 (Strong Bisimilarity). Let T be a monad, and: —

— inT-cX
Din(S) & {6 S[0,1] | 67 (0, 1]): finite, Sogp(s)=1}. (V. B,1) andG" = (V. 17", I') be T-graphs inT"Gy . ThenG;
and G’ arestrongly bisimilarif there is a bisimulation relatio®
The monad structure is defined as below: fof S, return(s) is with respect to the endofunct@i(L. x (-)+Y") betweenB and B’
the Dirac delta functiod,: S — [0, 1]: such that for angz € X, I(&) R I’ (&); in this case, we write
G~ G O

def def

5:(s) €1 bu(0) D0 (2 £ s)

andforf: § — Dan(S"), We assume that all monads in the paper preserve weak-

pullbacks, which is a mild assumption often used in coalgebra

lift(f): Dgn(S) = Dgn(S") theory 6,130). In particular, theri” preserves injections and finite
) , intersections. Using this assumption, it is easily checked that the
lift(f)(#): S — [0,1] strong bisimilarity relation is an equivalence relationBigs .
(¢: S —[0,1]) — PN Z (¢(S) . f(s)(s’)) . Let us unfold the above abstract definition of strong bisimilarity,
vy whenT = Pgyn:
Dgn-graphs have probabilistic branches. m R: a bisimulation relation foPs, (Le X (-)+Y)

)) <=V (v,v")eR. (B(v), B'(v")) €
The séfl of graphs—withX andY as sets of input and output ,
markers, respectively—is denoted ByGs ; here, T’ may be omit- (Poin(LeXr4Y), Pan(Le X' +Y)) (Prin(Le X R+Y))
ted asgGs if it is clear from the context. We call &-graph dinite <=V(v,v")ER. 38 Cpip LeXRAY.
T-graph wherV/ is a finite set, and writ&- gf for the set of finite _ N /
T-graphs (inff], Prn-Gry is written asDB5). B(U)j(£€><r+y)(5) /\/B (V)=(Lexr ,+Y)(S)
We allow a graph to have multiple roots: a multi-rooted graph is <=V(v,v")eR. 3{(l1,(u1,u1)), s (In,(Un,us)), &y1, ..., &Ym }
to a forest as a single-rooted graph is .to gtree. For single-rooted Cfin LcXR+Y.
grar;:?j,evr\]/itc;‘;({ag}usedefault markei&to indicate the root and use B)={(11, 1), v, (I t1n), &1, s &tim} A
Y v -
Note that a node can have several output markers—if a mdnad B'(0)={(l1,u1), s (ln, un), &1, s 8ty }
is non-deterministic as the above examples—and an output marker—v(v,v')eR.
can be put on several nodes; while, a node can be pointed by several , , P ,
input markers, but an input marker points just one node. (VL weB(v). 3u'. (1, u)€B (V') A (u,u')€R) A
. . e (V&yeB(v). &EB'(v)) A
2.2 Graph Equivalence in xL,: Bisimilarity i ,
with =-elimination (V(l,u")eB'(v"). 3u. (I, u)€B(v)A(u,u')ER) A
In the remaining part of this section, we give a semantic equiva- (V&yeB (v). &’/GB(”))

lence of graphs ok As discussed in the introduction, we regard The |ast formula can be expressed as in the following pictures.

the graphs i\ as an extended tree data structure, i.e., as infinite v,
v v

trees, so we shall use bisimilarity semantics rather than equality or VoLV Yy L3y Yoo Y&y v &y
isomorphism semantics. R R R R , ,

p Vv’$3u' vv/\lvu/ VI,;/V” & Vﬁ’,,,, v&y
! Precisely, this is not a set but a proper class, but this matter is] oooom om o
resolved in usual way in coalgebra theory{ifis ranked. In this Now, let us define our bisimilarity, whose instantiation to
paper, we consider only ranked monads. the case wherl’ = Py, should agree with the bisimilarity of

UnCAL [6]. The bisimilarity of UnCAL is defined by replacing
the first and the third pictures above with the following two pictures
(and similarly for the second and the fourth pictures).

v
e vy € € l € € €
Yo S0 S Yo S Y &y
WEENE €3 N R e € e
v Ull e v;,» u’ Vv/eavie..é /U;/'(;r'r}” &y

With this bisimulation, we “skip” zero or more occurrencescef
edges before a nanedge or an output marker. Categorically, this
kind of iteration is captured by the notion of @aration operator
which is the dual notion of a fixed-point operat@9[[17]. From
now we defines-elimination—which is almost the same as that for
an e-automaton—in terms of an iteration operator in the Kleisli
category of a monad’, and then give a definition of bisimilarity
for T-graphs.

For a monad’ onSet, theKleisli categorySetr of T'is defined
as below: objects iBetr are sets, and morphisnis — S’ are
functionsS — T'(S’). The identity morphisnid on S is

id © return: S — 7(S),

and the compositiog o f of f: S — T'(S") andg: S" — T(S")
is defined as

go f Elift(g) o f: S — T(S").

A Kleisli category has coproducts: the coproductsafand S, is
just S1+S2, and the injections are

ng ®f return o in;: S1 — T(S1+S52)
ing ©f return o ing: Sy — T(S1+52).

Copairing of a pair of functiong;: S1 — T(S’) and fa: S2 —
T(S’) is the same as the copairing$et, i.e.,

[f1, f2]: S1452 = T(S").

We write V: S+S — T(S) and + for the codiagonal and the
coproduct on morphisms iBetr, respectively.

Next we recall the notion of an iteration operatdQ| [17].
Though we can define an iteration operator for any category with
finite coproducts, here, we define it directly on the Kleisli category
Setr of a monadl’ on Set, and say thaa monadl” has an itera-
tion operatorif Setr has it. Aniteration operatoriter on Setr
is an operator on functions

f: 8 —T(S+A)
iter(f): S — T(A)

such that the operator satisfies the following axioms:
e (naturality:) forf: S — T(S+A) andg: A — T(A"),
goiter(f) = iter((idg+g) o f): S — T(A),
e (dinaturality:) forf: S — T(S’+A)andg: S" — T(S+A),
liter([f, in] 2.9),id) o f = iter([g, ins] o f): § — T(A),
e (unfolding:) forf: S — T'(S+A),
iterf = [iterf,id 4] o f: S — T(A),
e (codiagonal:) forf: S — T'(S+S+A),
ster(iter f) = iter((V+id4)o f): S — T(A).

Further, for a class\t of morphisms ofSetr, iter is calleduni-
form on M if for any function f: S — T(S’) in M, and any
functionsg: S’ — T(S’+A) andh: S — T(S+A4),

iter(g) o f = iter(h): S — T'(A)
whenever
gof = (f+id,)oh: S — T(S' +A).

The axiom of uniformity is used for logical relation on an it-
eration operatoil2]. We use uniformity to show later that strong
bisimilarity implies bisimilarity, and also in the proof of Lemifi&

Example 4 (Monads with Iteration Operators). For the count-
able powerset monaf.., and a morphisny: S — Pens(S+S")
in Setpcm,

iter(f)(s) & {s'eS’ | IkeN. Isq, ..., s, ES.
S1€F(8) Ao AspE€EF(sk—1) As'Ef(sk)}
Also, thecountable multiset monai/.,s:

Mene(S) &' {$: S — NU{oo} | ¢~ (N—{0}) is countablg
has an iteration operator, which is given with the same formula as
that for Peps.

Extending the list monad-4st(S)
list monadCList is defined as

CList(S) € 115",

whereN is generalized td., the set of countable linear ordered sets
up to order isomorphis% Set crist also has an iteration operator
(seellL4, 2] for the details).

For probability graphs,countable subprobability distribution
monadSubD ..t has an iteration operator:

def

I1,cnS"— acountable

def

SubDent (S)
{¢: 8 —[0,1] | $*((0,1]) is countableX, ¢(z) < 1}.

Note that here the summation of probabilitiese(x) is not neces-
sarily 1; this is because the probability-3, ¢(z) is reserved for
the probability of the nontermination of the iteration operator. The
definition of the iteration operator fafubD.,: is also similar to
those forP.,; and M..t, seellL§] for the details. o

Now, let us define-elimination. The following characterization
of e-elimination as an iteration operator is due/18,[16].

Definition 5 (e-elimination). Let T' be a monad andter be an
iteration operator iSetr. For al-graphG = (V, B,I) € T-Gy,
its e-eliminatione-elim(G) € T-Gy is (V, B', I) where

B' ¥ embed o iter(iso o B),
embed is the embeddin@’ (LxV+Y) — T(LxV4Y), andiso
is the composition of

T(LexV4Y) 2 T(L+1)xV4Y) 2 T(V4H(LxV4Y)).
Converselys-elimination induces an iteration operator; let us

consider &'-graph(V, B, I) in the case thaf =0. ThenB: V —
T({e}xV+Y), and if we applye-elimination to this, the resulting

2 More precisely,CList(S) is the set of objects of the skeleton of
the comma categorfU | S) whereU : CLO — Set is the for-
getful functor from the categorZL.O of countable linear ordered
sets and monotone functions.

branch function isB’: V. — T(0xV+Y). Thatis, we getan Terme =z | Az.e|ee| (e,e) |n'e| e {lambda terms }

operator that maps a functidi — T(V+Y) to a functionlV — | if e then e else e { conditional }

T(Y). This operator is the same as the structure of an iteration | op, { T-algebraic graph constructors €) }

operator in the Kleisli category (if we allo to be arbitrary sets); | (e:e) [(&y) [&x=e|() |eDele@ec]|

and then we find that it is natural to adopt the axioms of iteration | cycle(e) { common graph constructors }

operators as axioms of theelimination. | srec(e)(e) { structural recursion application }
Now, let us define our bisimilarity for graphs haviagdges. lale=e {label (a € £) and label equality }

Typeo::=Bool | Label | Gy { boolean, label, graph types }

Definition 6 (Bisimilarity). LetT be a monad having an iteration loxo|o—0 { product types and function types }

operatoriter in the Kleisli categonSetr, andG = (V, B, I) and
G' = (V',B',I') be T-graphs inT-G3. Then,G andG’ are

H . T
bisimilar if e-elim(G) ande-elim(G’) are strongly bisimilar; in Figure 2: Syntax of Arq

this case, we writé& ~ G'. O

It immediately follows that strong bisimilarity implies bisimilar- . [e Fabel
ity, if the iteration operator oI is uniform on the class of functions (s €%, n;anty) I'Fe: Gy
(rather than not necessarily on all morphismSét+). We use this I'Fop,:GY" = Gy Tk (eire2): Gy
property in some of the proofs in this paper.

WhenT = P.nt, by unfolding the above definition, we get the (&y €Y) I'e: Gy
original definition of bisimilarity in UnCAL. I'{&): Gy Tr & =ec: G;&l‘} I'k(): Gl

The above definition implies that the notion of aredge a la
e-elimination is independent of bisimilarity semantics, and it can

X X . X
be accommodated in any equivalence relation, such as equality and I'te: Gyt ke Gy? I'ken: Gi;
graph isomorphism, by similarly taking inverse images. (X1nNXz=10) I'Eex: Gy

F#elﬁaeg:GiflUXz I'kel @ex: GE

2.2.1 Generalization of Bisimilarity with Monad Ex-
tension
Although we could define bisimilarity as above, whéns one
of the monads in Exampld, the T-graphs might have countably
infinite width of branches. In a real database system, a graph (is

I'ke:G¥ly (XNY =0)
'k cycle(e): G

often very large but) has finite size, i.e., finite number of nodes I, l:Label, g:Gy Fei: G Tkes: GY
and a finite width. In other words, real data graphs do not have ' srec(A(l, g).e1)(e2): G§§§§

e-edges, which cause graphs to have infinite widths. Our use of
e-edge is just in an implementation af for efficiency and for
defining structural recursion; so we shall suppose that what users
of AL, can observe is just finite-width graphs, and graphs whose
e-elimination have infinite widths are regarded as errors. (For any
finite List-graphG, it is decidable whether theelimination of G
keeps finite width or not; sed4, 2].)

Therefore, the finite powerset monad and the other monads in3' SYNTAX AND SEMANTICS OF /\gG

ExamplédZ are more suitable for practical purposes; however, they Here, we give the syntax ofi.; and its semantics. The seman-

(Just unfamiliar rules are listed. We usandg as meta variables
for variables of typef.abel andGsY, respectively.)

Figure 3: Typing Rules of AL

do not have iteration operators. Hence, we do not requireZtiiat tics of A has two steps. The first step is an interpretation to
self has an iteration operator in the Kleisli category, and instead we just in the (V; B, I') form, without considering bisimilarity. This
use the following assumption: we say tlahas an extensiof” is equality-based semantics rather than bisimilarity-based one. The

for e-eliminationif we have a monad”, an injective monad mor- next step is to give an interpretation up to the bisimilarity; to do
phism. : T < T”, and an iteration operator in the Kleisli category S0, we need to showisimulation genericityof terms, i.e., well-

of T that satisfies the uniformity on the class of functions. Here, definedness in terms of bisimilarity. Since structural recursion is
monad morphisris a natural transformation that is compatible with @ higher order function, before showing bisimulation genericity,
return’s and withlift's (see M| for the details). we will extend the equivalence relation of bisimilarity to function

Definition 7 (Bisimilarity Generalized on Size). LetT be a monad types.

which has an extensiofi” for e-elimination. Then there is an 3.1 Syntax Of)\g
embedding-G : T-G¥ < T’-Gy which maps(V, B,I) to ¢
(V,t(c.xv+y)oB,I). ForG andG’ in T-G5, G and G’ are
bisimilar if -G (G) and-Gs (G') are bisimilar in the sense of
Definition@ O

The syntax ofAL is given in FigurdZ, and the typing rule is
given in Figuréd The syntax of\% in fact depends on not only
a monad!” but also its signatur&, which will be explained in the
next subsection. However, the expressive powexkf is indepen-

From the assumption thahas injective components afidpre- dent of a choice of the signaturgs

serves weak pullbacks;Gy reflects strong bisimilarityd0, The-
orem 4.3.6]; hence, strong bisimilarity and the above bisimilarity 3.2 Graph Constructors

are equivalent fof-graphs having ne-edges. Here, we give an interpretation of the graph constructopg-in.

In the next section, we assume that a moffad finitary and The original UnCAL and\’;g“ have the nine graph constructors
see the usefulness; after that, in SecfiA.4we will come back in Figureld, by which all finite graphs can be represented. (In the
to more detail discussion why and how we need an extension of a original UnCAL, the graph constructo{s : -) and(&y) are written
monad fore-elimination. as{a : -} and&y, respectively.) Note that these constructors should

&Xm

@@A A

GuUG' {a:Gy (&) &=G ()

&X1..&Xm &X' &X e IE;& . fv'l&;cl__:;'l&;(‘m
G G’ &gy | 1O
G’ “\&Xl..E.&Xm &yl...&yn
&yl &yn| |[&V1..&yn| [&zi.&zn\ N7 N
GG G@G' cycle(G)

Figure 4: Nine Graph Constructors of /\P““

be written ag }y, G1 Ux,y G2, and so on with type (marker-sets)
annotation; however, we will omit the subscriitandY” to avoid
clutter.

We separate the nine graph constructors @gmmmon graph con-
structorsandT -algebraic graph constructorsVhenT' = Psn, {}

B"(im (v) def

Edge (I,v) — Edge (I, in;(v))
Outm (&) ~ Edge (¢, in,(I'(&))))
def

B" (in,(v")) = (T(Lex (in)+2))(B' (V"))

T(f
(L‘ ><V+Y—>£ x(V+V+2Z

e ForagraptG = (V, B,I) € G¥_y SuchthatX NY = 0,
cycle(G) ger (V,B',1) e Gy

whereB’ (v) &' T(f)(B(v)).
[LeXVHXUY) = LoXV4Y

)
Edge (I,v) — Edge (I,v)
Outm (&) — Edge (¢, I(&))
Outm (&) — Outm (&) O
Remark for Figurét Recall that, for one grapty in Gi¥ and
one marker&y € Y, there may be more than one or ze&g-
occurrences id7, while for one marke&x € X, there must be just

one&z-input node inG. Hence, for eacBy; in G @ G’ in the fig-
ure, although the number efedges from a node wit&y;-output

andu areT-algebraic graph constructors, and the other seven graph marker seems just one, in fact we add the same numbeedfes
constructors are common graph constructors. Common graph con-as the number afy;-output marker occurrences @. This is the
structors are defined independently of the difference of monads, same forcycle(G); but, onG U G, the number of added-edges
while the definition ofI"-algebraic graph constructors depends on are just2m.

algebraic operations &f.

3.2.1 Common Graph Constructors
We first give a definition of common graph constructors.

Definition 8 (Common Graph Constructors). LetT" be a monad.
e ForG = (V,B,I) € Gy,
(a: G) (Vu{yo fresh}, B', {&— vo}) € Gy
whereB’ (v) £ B(v) andB’ (vo) &' return (Edge (a, 1(&))).
o For& Y,
(8y) £ ({&}, {&+ return(Outm (&)))}, id(g;) € Gy
e ForG = (V,B,I) € Gy,

(& :=G) ¥ (V, B, {8 — I(&)}) € GI&.

e () Z' (9, “the unique function frond”, idy) € G2.

e ForG = (V,B,I) € G andG’ = (V',B',T') € G5
such thatX N X’ = ¢,

GoG Ewiv', B', 1+I') € gx°¥

where B & [T(L.x (in)+Y) o B, T(Lex (in,)+Y) o
B': V4V = T(Lx (VHV)+Y).

e ForG = (V,B,I) € G andG’' = (V',B",I') € G},

GG L (V+V', B", injol) e gy

where

3.2.2 T-Algebraic Graph Constructors

Here, we will define theél-algebraic graph constructors. The
definition depends on algebraic operations of a mdfiadnd the
syntax forT-algebraic graph constructors depends on a signature
3> generating the mondd. For example, a finite powers&, (X)
is a free semilattice, which has two algebraic operators, i.e., bottom
and join. In the syntax o}\’;g", when we choose the signature
of (the function symbols of) bottom and join, themp, (s € X)
have the same interpretation as the two graph constru€joasd
U in the original UnCAL. Below, we first define the interpretation
of T-algebraic graph constructors without considering signatures,
and after that we consider signatures for syntax&f.

Later, we assumé@’ to be finitary in order to prove Proposi-
tion[Id A finitary monadonSet is a monad’ on Set such that the
functorT preserves all directed colimits 8et; in other words, for
any setS and anyz € T(S), there is a finite subse&t’ C S such
thatz € T(S"). The monad$s,, List, Man, and Dg,, are all fini-
tary monads; for example, fot[1, 6,4, 6, 4] € List(N), we have
afinite subsef4,1,6} C Nand |4, 1,6,4,6,4] € List({4,1,6}).

Here, though we define graphs(ii, B, I') form, when we con-
sider the property of graph operations, we consider them up to
bisimilarity. Hence, we assume thd@t has an extension fos-
elimination.

First, we explain that defining -algebraic graph constructors
for multi-rooted graphs is reduced to that for single-rooted graphs.
Note that the multi-rootedness is semantically the same as the
power of sets of graphs: i.e., there is the following bijection.

oplus: (ng)X 2 G
fH&QéX%I:f(M)
(8 — (&) @G) — G

For ann-ary operatofo: S — S on a setS, there is the obvi-
ousn-ary operaton®) on the X-th power ofS: i.e., the com-

position of ($¥)" = (5™)¥ 2%, 5% we call thispower al-
gebra Then, whenl' = P4y, i.e., for UnCAL, it can be shown
thatU: (Gry)?> — Gry is nothing but theX -th power algebra of
U: (Gry)? — Gry. Hence, we will defing-algebraic graph con-
structors with the typ€Gey)™ — Gy

Now, for a finitary monadr’, let us define a functiod™ as

T9(X) £'7-G; . for afinite setX. As we will soon show['¥ it-

Definition 9 (T'-Algebraic Graph Constructor). LetT be a fini-

tary monad. For a generic effectc T'(n) (n = {&0, ..., &n-1}),

theT-algebraic graph constructosp, of s is defined as below.
For graph3o, ..., Gn—1 € Ge¥5,

op,(Go, ..., Gn1) £ (v(s)-X) @ (ngBl(Lisoij @GQ) € Gy

=0

self can be extended to a finitary monad. Then, for constructing op- Where

erators of the typéGry)™ — Gry,i.€.,T9(Y)™ — T9(Y) we can
use the resuld4] that an element in T'(n) bijectively corresponds
to a familyo(s) of n-ary operatorgo(s)y: T(Y)" — T(Y))y: set
that is natural or” € Setr. In this context,s is called ageneric
effect ando(s) is called analgebraic operation Fors € T'(n),
o(s) is defined as

o(s)y: T(Y)" (= n=T(Y)) = T(Y) (D)
£ Uftm (f)(s)

and for(oy: T(Y)" — T(Y))y: set,, the corresponding is de-
fined asoy, (return’). For example, whefl = Pg,, {0,1} €
Pan(2) (2 = {0,1}) corresponds taJ: Pa,(Y)? — Pan(Y).
From now, we apply this correspondence to the casB%fasT.
Then we will show that, for a given finitary mon&d there is an
embedding off" into 79, so that we can defin&-algebraic graph
constructors by algebraic operationslaf

Now, let us define the monafl®. Here, we consider only fi-

o 2, (&= (1(s) @ line:])) € Grnxx

inge & {& > (&,8)}:n — nxX
iso; & {8 x X — X. O

Signatures of Monads

In general, there are infinitely many generic effects T'(n)(n =
1,2,...). For defining syntax of, we have to choose a sEt
of generic effects such that is “representable in computer” and
generates all generic effects.

For a finitary monad, there is a subsetof [] . 7(n) such
that, for every setS, any generic effect ifl’(S) is a finitely
many times iterated composition of some generic effect&;n
here, for generic effects € T(n)(n={0,...,n-1}) andt; €
T(S)(i = 0,...,n-1), their compositionmeans the Kleisli com-
position lift ™' (i +— t;)(s) € T(S). We call such® a signature

nite sets, since it is enough here (and also since finitary monads areand call an element in £ N T'(n) a function symbol of arityn.
determined by definitions for finite sets by the left Kan-extension The whole sef [, cy7T'(n) itself is one (maximum) signature, but

as in [L8, Proposition 7.6]). The monad structuresTf are de-
fined as follows: return™ : X — Grx mapsé& to (&), and
Lft™: (X = Gry) = (Gix — Gry) Mapsf to (-) @ oplus(f).
Thus, a graph iG:5 (2 (Gry)*) can be regarded as a “function
from X to Y (precisely, a morphism in the Kleisli categorybf);
then the composition is given b@ operator. For later use, for
f: X — Y, we define itanarker renaming graph

”

L] gef oplus(returngg of) €Gy.

Then,|id x | becomes the identity for the compositian

Next, we define a monad morphism 7" — T¢; for a finite
setX ands € T(X), v(s) £ ({+}, B, {& — *}) € Gix where
B(%) o T(in,)(s) € T(Lex{&+X). For example, foll' =
Prn and2 = {&0,8&1} € Psn(2), v(2) € T9(2) = G, is a single
node graph where the node has two output marg@rsnd&l and
no edges.

Now, as promised above, let us consiét as an instance 6f
for the function[). Forn = {&0,...,& -1} andG € T9(n) =
Gt ,, its algebraic operation is

O(G)Yi (ng)n — Gry
f— G@ oplus(f).

For example, fol’ = Pg, and2 = {&0, &1} € Ps,(2), the binary
operator

o(7(2)y: (Gry)® = Gy
(Go,G1) »v(2) @ (&0 :=Go @ & :=G1) (2)

agrees withJ: (Gry)> — Gry in UnCAL. As explained above,
for Gey in Figured is just theX-th power algebra ob) for Gy .
Observe that, corresponding @ and @ occurring in @), in Fig-
ureld the graph constructay has similar parts t@ and®.

Let us sum up the above.

usually there is a much smaller signature—finite, or presentable in
a meta language for implementation—as the following examples.

Example 10. WhenT = Ps,, we can take a signaturf{}(e
P5n(0)),{0,1}(€ Psn(2))}. Then,op;, andopy,,, are the
same as the graph constructggsandu in UnCAL, respectively.
The cases ofList and Ms,—which correspond to monoid and
commutative monoid, respectively—are quite similar.

For the finite probability monads,,, let us see that the following
Y. becomes a signature:

22) E{s,:2500,1] |7 €[0,1]} < Dan(2)

Y(n) ey} (for othern)
where s, is defined ass,(0) ® 1 and sr(1) € 1—r. For
¢1,¢2: S — [0, 1] in Dﬁn(S), O(ST)(¢0,¢1): S — [0, 1] in

Dsin (S) is as below:

o(sr)(do, p1)(s) =7 do(s) + (1=7) - da(s).

Now recall that “singletons” itDg,, (.S), i.e., elements imeturn(S)
are given as the Dirac delta functiods as in Exampl€ Then

it is easy to see that the abo¥rin fact becomes a signature: for
exampleg: N — [0, 1] in Dg,(N) such that

1 1 1

can be represented by algebraic operations from the abase

¢(n) = 0 (for othern)

1 1 1 1 1.1 2
= 0(s1) (80, 0(51)(81,6))
(or, = o(s%)(él,o(s%)(éo,&)) etc).

As this example, though a signature may be infinite, still may be
presentable in a meta-language for implementation. |

A signature is enough to represent @Halgebraic graph con-
structors: For generic effects € T'(n)(n={0,...,n-1}) and
t; € T(m)(t = 0,...,n-1), the T-algebraic graph constructor
of the Kleisli compositionZift™ (i ~ t;)(s) € T(m) agrees
with the composition of the correspondifigalgebraic graph con-
structorsop, : (Gry¥)" — Gry andop,, : (Giy)™ — Giy, i.e.,
op,o(op,,). :(G¥)™ — Giy. Hence, by the definition of

i€En

signatures, any -algebraic graph constructor can be represented

as a finitely many times iterated compositionioflgebraic graph
constructors of some function symbols in a signature.

Thus, though syntax of% depends on the choice of signatures
of T', the expressive power df-algebralc graph constructors is the
same regardless of the choice.

As an important remark, the above definition ‘Bfalgebraic
graph constructors gives us equational theoriesTfealgebraic
graph constructors for freeT-algebraic graph constructors are
defined through the monad morphism7 — T9, so theT-

algebraic graph constructors obey the same axioms as those of the

algebra ofT". For example, finite powersets are free algebras of
upper semilattices; hence, the graph construc{¢rand U sat-
isfy all axioms of upper semilattices: i.e., associativity, unitality,
commutativity, and idempotency. Moreover, sincé& monic, the
converse, a kind of completeness, also holds.

3.2.3 Full Representability of Finite Graphs

The next proposition is the most important property of graph
constructors.

Proposition 11 (Full Representability of Finite Graphs). Let

T be a finitary monad orSet which has an extension fos-
elimination. Any finitel’-graph can be represented up to bisimi-
larity as finitely many applications of the graph constructorst

Here we give a simple proof of the above proposition using the
notion of markers; this proof is a generalization with monads of
an idea explained by example]| However, the use of mark-
ers is not essential; for a naive and less simple proof,[2ead-
pendix D].

Before the proof, we definké-step unfoldindunction

uf: Gry — T(ﬁengy+Y).

First, for a graph = (V, B,I) € Gy, and a node € V, we

define

Glo E'(V, B, {& v}) € Giy

thus, we have a functio®|): V' — Gy
(V,B,I) € Gy,
del f
uf (G) E T (Lex(Gl))+Y)(B(1(&)).
The functionuf is strong bisimulation generic; taking the quo-
tientGry /~,, the function
uf [t Gy [y = T(LeX (Gry /~)+Y)

induced fromuf is nothing but the coalgebra structure fofal
locally finite coalgebrd1, [20]. Using [, Theorem 3.3] and20,
Corollary 11.15], we can show that for any finitary mon&d
uf /~. is isomorphic.

Let us define the inverse-up-to-strong-bisimilarityugt

uf ' T(LexGey+Y) — Gy,

i.e.,uf ! is also strong bisimulation generic and the induced func-
tion uf™ /.. becomes the inverse aff /... This can be con-
structed just by our graph constructors:

uf'1 =toT([s,s])

®)

Then for G

where
Z(():()): LXGry = Gry,
s E ()Y > Gy,
and
def 79
t=py o ’Ygfy T(Gry) = Gry 4
(MY L™ (idTG(Y)))-

Note that sincd’ is finitary, for any element € T'(Gsy), there ex-
ists € T'(n) andn-number of graph&’;—i.e.,Gy: n — Gy —
such thatr = T(G(_))(s). Then,

t(a) = (u¥ ° %6y © T(G))(s) (naturality of~)
(uy o T9(G() o mm)(s) (by monad axiomjs
= ("™ (Gey) 0) (s) (def. of lift ")
i Tn(s) @ oplus(G () (def. of op)
= op (G07...7Gn71)-

Hencet(z) is defined with th&-algebraic graph constructors. For
example, whefl" = List,

t = foldr(+,[]): List(Gey) — Gry -

On the above, preciselys(e, G) = (¢ : G) is not a representation
by graph constructors, because an expresgiare) is not allowed
in M- whena = . For the case, in the above definition, replace
such(e : e) with e, which is bisimilar to(e : ¢€).

Now let us give the proof of Propositidil

PROOF. Let G = (V, B, I) be a finite graph irg3s. First we
prepare a markelw for each node, then we write& V" for the set
of the markers, and defing: V- — &V as f(v) = &. Then for
eachw,

def
Gy =

uf (T(Lx(() 0))+Y) (B))) € Gavv
can be represented by graph constructors. Then
|fol| @cycle (© & ::Gv) €6y
veV
is bisimilar to the original grapl. |

For example, for the grapi in Exampldll

= (d: (&2)) 4 (a: (&)
Gz = (c: (&3))
Gy = (d: (&2))
Ga = (b: (&3)) (&),

thend is bisimilar to
(&) @cycle ((&1:=G1) ® (82:=G2) ® (&3:=G3) (&4:=GL)).

3.2.4 The Need of Monad Extensionsf@&imination

So far, we have seen the importance of fihéarity of a monad
T for finite-graph transformation calculug~;. Here, we explain
why we need to care with the phenomenon of occurring infinite
width in this paper and why we did not need to take such special
care in the case of the original UnCAL fét,,-graphs.

WhenT is finitary and has an extensidr for -elimination, if
we want to define-elimination only forfinite T-graphs, without
loss of generality, we can replace the extengidnwith its finitary

part T’ |gin:
U

S’CS, S’: finite

def

T'|6n(S) & 7'(8").

(See Appendif@lfor details.)

For unordered graph§Pcnt) |sn iS €equal toPs,; thus, we do not
needP..; ande-elimination does not produce infinite width. This
is the reason why we did not need to consider infinite width for
UnCAL.

For ordered graphg,CList)|an(.S) consists of such countable
lists [that the number of elements Sfthat occur ini are finite.
Hence, still we can not avoid the notion of a countable linear order,
i.e., infinite width, for even finite ordered graphs havirgdges.
(For the details on ordered graphs, s&4 P].)

Also on the other two example¥s, and Dg,, T'|sn does not
become the origindl™: i.e.,

(Ment)|5in(S) = {¢: S — NU{o0} | ¢~ ' (N—{0}) is finite}
(SubDcnt)|an(S) =
{¢: 5 = [0,1] | 7 "((0,1]) is finite, S, p(z) < 1}.
However, in these case€E; |, are easily representable on comput-
ers differently from the case of infinite-width ordered graphs.

3.3 Structural Recursion

Now, let us define structural recursion fBrgraphs, which plays
aleading role in transformations af. We again show the typing
rule for structural recursion:

I, l:Label, g:Gy Fe:GZ TFe:Gy
I Fsrec(A\(l,g).e)(¢/): G

WhenT = Ps,, the structural recursiofi = srec(A(l, g).€)
satisfies the following characteristic equations, where we consider
single-rooted case for simplicity.

ViCHy) = {}

flgrUg2) = flg1)U f(g2)
fl:9) = el,g9)@f(9)
F((&y)) = &~ (&, &)].

By regarding the above equations as an recursive definition for in-
finite trees, the above equations serve as a definitiofi tf be
a function which inputdinite graphs and output®finite graphs.
However, the outputs of are in fact (bisimilar to¥inite graphs,
and this is proved by using the following bulk semanticg of
Now, we give a definition of the bulk semantics, explaining with
Figured In Figured in each step, gray parts show parts unchanged
from the previous step. A marker above a node is an input marker
and markers below a node mean output markers. Each box with
bold frame is itself a graph, while each dotted box—a part of a
graph—has no meaning, just hints that it was a graph before.
Briefly explaining, with bulk semantics, we first calculate the ap-
plication of a given input functiom to each pair of an edge and its
following subgraph, as the graph (b) in Figlethough the ex-
ample ofe in the figure does not use the second argument for sim-
plicity of explanation. After that, we connect the results in keeping
with the shape of the original graph by usingdges, which results
in the graph (f) in Figuri&l

Definition 12 (Bulk Semantics of Structural Recursion). Let T'
be a finitary monad oi$et. For a functione: LxGry — GiZ,
a structural recursion functiorsrec(e): Gy — Gi555 is de-
fined through the following steps. Before that, we extentb
&: LcxGry — GiZ which maps additionallye,) to the “identity
graph” |idz| € Gi% (see the upper leftmost picture in Figlie
In the following, the steps from (a) to (f) correspond to those in

Figured
(a) [Input of srec(e)]. Letus takeG = (V, B, I) € Giy .

(b) [Relabeling by e]. Let us definez: L xV — GiZ asé o
(idc. xGly), whereG|y: V — Gy is defined as Equa-
tion (). Then, we construct a new branching functiBn
whose labels are graphs@Z: B; is defined as the compo-
sition of

V B p(Loxv4y) ZUemtidy),

T(GExV+Y).

(c) [Storing target nodes in output markers and duplicating
original output markers]. Let B> be the composition of the
following functions

T([p,
VIS 26 VAY) "D (G v oy

wherep andgq are the obvious functions:

p(g,v) g @ |8 v ini((82,0))]
def

q(8&y) = |& > inr((&,&y)) .

(d) [Connecting horizontally by T-algebraic graph construc-
tors]. Now Gry has the algebraic structute- defined in
Equation @) after Propositioflll and we can regard input

marker sets as power throughlus: (Gey)™~ = Gy, SO

we have the obvious power algebra structtﬁ[fé> on Grs,
i.e., the composition of

X
T(G¥) = T(Gry) ¥ L2 G
Then, letB;s be the composition of

+(2)
ZXVAZXY

Ba Z z
V == T(Gtzxvizxy) GtZxv+zxy-

(e) [Disjoint union by @]. Using the bijective correspondence
oplus : (V—>gf§><V+Z><Y) = gfgingZva
we obtain a grapk’ & oplus(Bs) € G215V, 4.y -

(f [Connecting vertically by cycle and input marker re-
naming]. Finally, we define

ZxX
ZxXY

srec(e)(G) & |idzxI|@cycle(G) (€ GZX¥).

a

We remark that the finitarity of a mon&dis used at the step (d)
for the algebrdy . The above definition works if we replace g
with G; then,T does not need to be finitary.

The above semantics can be implemented in an obvious way (a
hint for implementation can be found it4]). Our implementation
for unordered graphs and ordered graphs in OCaml can be found at
http://www.biglab.org/src/lambdaFG/

For generic implementation parameterizing monads, in a meta
language we define a class of monads-with-signatures with three
methods: a signaturg X —T'(N), an arity functionn: ¥—N, and
fold: VS.(IT,cx(S“—=8))=(T(S)—S). In, e.g., Haskell, the
dependent typd], . (S**'—S) can be replaced with a larger
type ©—(SV—S), since there is a right inverse of the projection
SN 559 e id gacsy X L2 SUH X1 — §4() 5 §N = gN,

Finally, we give an example of queries using the structural recur-
sion; for more examples, se@, [L5)].

Example 13. Consider an ordered graph representation of books.
Since “sections” are ordered and there are some reference links in
books, we can see books as ordered graphs. The following struc-
tural recursiortoc, which is adapted froni25], computes the table

http://www.biglab.org/src/lambdaFG/

(82,,1)(82,,1

i

(82,,2)(82,,2

(a) (b) & (c)
&z, Rz, @Zl iZ_
e(a,_):=|[0F3 “ Q
&z, 8z, & 8z, &z N
8z, &z ||& &z
&z, &z 1S40 N
P
e(b,_):= b’ &Zl &ZZ &Zl &Zz
8z, a
2z, & &
Z.
g(e,_):= @1 =
82, 8z, = srec(e)

&

&le&y)(&ZZI&y)

&z,

‘ " Y (&zl,&) (8&2,8)
1 0 \m M

———————

(e)
”””””””” 2 (&zl,O)\(&zz,

&,1&,1 ‘

1 &zl, H (&zz,

__-%(&z: 2] (&2,,2
""" T AR
[0.2->(12):
(0,2)] [(1,2) : !

(&er&Y) (&ZZr&y)

(&2,,2) (8&2,,2) &z, &z, 5. 2)
ez, 2)f,2) e 2
AT o
S ‘ 2N 2
(0') (1 2)

Figure 5: Bulk Semantics of Structural Recursion: Example with Ordered Graphs

of contents of books in which sections can be arbitrarily nested:
toc(db) = srec(A(l, g).if l=section
then (section : (get_title(g)

else (&) (db)

where the functiomyet_title results in the title of the section:

++(&))

get_title(g) =srec(A(l1, g1).if Iy =title
then (title : srec(A(l2,g2).(l2
else]) (9)

1)) (92))

O

3.4 Bisimilarity for Higher Order Functions
So far we have given the semantics wi{tHi, B, I) form at the

d f
Wheno = 01 — o2, we define a binary relation., on [o] = <

[[0’1]] — [[JQH as

fro f SV, € [ou]. (@ ~oy 2 = fl)

~oy f'(2)).

Then for any typer, ~, becomes a partial equivalence relation on
[o], i-e., an equivalence relation on the subset

I~vol €4z € [o] | 2 ~o 2}

We call a functionf: [o1] — [o2] (higher order) bisimulation
genericif fisin |~+, +,|. (Note that this kind of lifting of se-
mantic equivalence to function types is possible for any equivalence
relation such as strong bisimilarity, graph isomorphism etc.)

Then from the Basic Lemma of logical relation, interpretations
of all the terms are bisimulation generic if interpretations of all the

equality level. In the rest of this section, we consider semantics at constants are bisimulation generic; as a result of the consequent of

the bisimilarity level.

In Section?, we gave the semantic equivalence for graph types
G7, i.e., the bisimilarity. Since\f has higher order functions,
andsrec is a higher order function, we have to extend the seman-
tic equivalence for base types to function types. It is well known
that if we lift an equivalence relation to function types we need to
switch from the notion of an equivalence relation to that péetial
equivalence relatiori.e., an equivalence relation on some subset of
the original set. This is because, now, not all functiongjgh are
bisimulation generic, so we have to cut out gubsetonsisting of
bisimulation generic functions.

Let us give the formal definition. For the typesof AL, we
define binary logical relations., on [¢]. Wheno = Gy, ~ax

is the bisimilarity onGe3 ; for the other base types, ~, are just
the equality relations Whea o1 X o2, we define a binary

relation~, on [[a]] [[0'1]] x [o2] as

’ def

(x1,22) ~o (27, 25) <= (21 ~oy 1) A (T2 ~oy Th).

10

this implication, we obtain a model of. in the cartesian closed
categorySet. (See the textbook2P] for the technique of logical
relation.) In the rest of this paper, we prove that the interpretations
of all the constants ok are bisimulation generic.

3.5 Bisimulation Genericity of Terms of A%,

First we show the bisimulation genericity of the graph construc-
tors.

Proposition 14 (Bisimulation Genericity of Graph Constructors).
Let T be a finitary monad having an extension teelimination.
All the graph constructors are bisimulation generic. |

PROOF For a constructoyf, prove that-elim(f(Gq, ..., Gn))
is strongly bisimilar toe-elim(f(e-elim(G1), ..., e-elim(Gy))).
This reduces the bisimulation genericity in the statement to strong-
bisimulation genericity, which is obvious. a

Next, let us consider structural recursion. The result below is
stronger than what is proved i6][even wherl’ = Ps,, because

here bisimulation genericity is proved also on the first argument Lemma 16. The structural recursiosrec is strong-bisimulation
e, while in [6], it is proved only on the second argument This generic: i.e., fore; ~g e2: LxGry — GiZ and forGy ~s G2 €
is the key point of our extension from UnCAL to the higher order G<¥, the following holds:

Pfin
calculusAp' srec(e1)(G1) ~s srec(es)(G2) (€ GiZly).
Theorem 15 (Bisimulation Genericity of Structural Recursion).
Let T' be a finitary monad having an extension feelimination

. : i . ProOF Basically, this is pr raightforward| rdin
T'. Structural recursiorsrec is bisimulation generic, i.e., if 00 asically, this is proved straightforwardly according to

the steps in Definitiol2d At the stef{f)]in Definition[I2, we used

e1 ~ ea: LxT-Gey — T-GeZ, and Gi ~ Gz € T-Gsy, cycle; accordingly in this proof, we use the uniformity of the iter-
then ation operator. For details, see AppenBlx O
srec(er)(Gh) ~ srec(e2) (G2) € TGz 4. CONCLUDING REMARK

PROOF. Basically we want to prove in a similar way to the proof ~ We presented a parameterized calculfig that is an extension
of PropositiorilI4, but there is a bit subtle problem. Though the of the lambda calculus with finite graph types, the graph construc-
following might be expected to hold, tors, and the structural recursion, for generalizing and extending
UnCAL [6]. We presented the semantics)gf that has a suitable
bisimilarity accommodating-edges as well as the termination and
in fact, there is a type error: i.e., nawelim o e is a function of the finiteness preserving properties. A further extensioAigf is pre-
type LxT-Gey — T'-Ge2 SO We can not applyrec with respect ~ Sented inig)].

e-elim(srec(e)(G)) ~s e-elim(srec(e-elim o e)(e-elim(G)))

to eitherT norT”. This can be solved as follows. This paper is based on our previous wdilKl]f As explained
First, it is easily shown that the structural recursion is defined N the introduction, in the previous paper a new calculus—named
“uniformly” on monads: Let asAp in the previous paper—for ordered graphs was introduced.
o . . oy The (_:alculusxFG is n_ot the same asL%! in the current paper; here,
i = -Gy : T-Gry — T-Gry, we give the comparison of the current and the previous papers. In

Arg, the structural recursion is extended from that in the current

- X i 1 i i i X >
wherew-Gsy is defined as just the restriction ofjy . For L&, so that it can transform sibling direction of graphs; hence the

e: LXT-Gey — T-Ge2, expressive power of is higher thamZ&i!. Therefore to extend
current work with such sibling transformations is important future

e LxT'Gry — T'-Ge o, work. Also, in the previous work we focused on ordered graphs,

X and gave some decidability results on ordered graphs. Moreover, in
G € T-Gry, the current paper the existence of a monad and an iteration operator
if €' o (Lx3) =1io0ethen is used as an assumption; while, in the previous paper to define the
o) T countable list monad and the iteration operator for the monad was

srec’ (e')(i(G)) = i(srec” (e)(G)). a main contribution.

Here the equality= means the exact equality rather than strong ~ The database community has undertaken a lot of work on graph
bisimilarity or bisimilarity. transformation languages, but most of it has been on graphs up to
This reduces the setting of the theorem to the case in whish ~ isomorphism (or equality); there has been little work on graphs

not necessarily finitary and T — T is the identity—i.e.T" (= up to bisimilarity with considering bisimulation genericity. [8][

T') is an arbitrary monad whose Kleisli category has an iteration h_owever, new semantics for the structural recursion of UnCAL was

operator—, so that-elim is closed inT™-G¢s%. This is because, for given.

any There has been a lot of work on structural recursion for specific

z kinds of graphs, such as graphs represented by trees with specific

€1~ e: LxTGry = TGz, pointers [L1, 8], and graphs represented by trees with embedded

there are functionsB,[7]. However, they do not ensure all of the bisimulation
) ~eh: LXT Gy — T’-gé ger_1ericity, termir_1a_ting property, and f_initer_less p_reserving property,

which are our original goals as explained in the introduction.

In coalgebra theory, i.e., the study of infinitary/cyclic structures,
some studies have focused on the finiteness of graph&, 28],
for every Kripke polynomial endofunctor or quantitative funckqr

such thatk] o (Lxi) = i o e;. We can take sucH, by using some
bisimulation generic retractioii of i. Such:* can be defined in
an ad hoc wa¥ Let G, be an arbitrary fixed graph ih-G;y-. For

G’ € TGy, if G'isinT-Gsy, theni* (G') & ¢, else ifG' is a systematic way of giving a syntax fully representing all firfite
bisimilar to some grapl’ in T-Gsy-, theni*(G") o (G should coalgebras and a sound and complete equational theory for bisimi-
be chosen), els& (G) def Go. larity were given. The differences between that study and ours are

as follows: (i) The two classes of endofunctors—quantitative func-
tor and ours with arbitrary finitary monads—are not comparable;
especially, our leading exampleist(L.x(-)+Y") is not a quan-
titative functor. (ii) Our equational theory is restrictive while the
e-elim(srec(e)(G)) ~s e-elim(srec(e-elim o e)(e-elim(G))). equational theory given in that study captures completely the bisim-
ilarity. (iii) Their study does not treat-edges, and is not a study
for transformations. (iv) The approaches to syntax are different:

Now, in this reduced setting, we will prove the goal in a similar
way to Propositiofl4 First, we can prove the commutativity of
srec with g-elim:

Then, for concluding the proof, it is enough to show the strong-

t3)|S|muIat|on genericity obrec (Lemmd’;@. . . The both can express arbitrary finite coalgebras, but there seems no
For one who wants non-ad-hoc way, if we assume that the given compositionatranslations between their and our graph representa-

function e; is the interpretation of some termin A, then we tion systems, and comparison of expressive power of open terms is

can get the desired as the interpretation df in)\}%. not obvious. Also, their approach is in a guarded style, by which

11

the unique fixed point operator can be used; while ours does not [8] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can

require guardedness, and require an iteration operator instead. count on. INPOPL'04, pages 135-146. ACM Press, 2004.
In [1,120], the authors studied categorical properties of the set of [9] L. Fegaras and T. Sheard. Revisiting catamorphisms over
finite coalgebras, and characterized it fial locally finite coalge- datatypes with embedded functions (or, programs from outer

bra. The class of endofunctors for coalgebras in that study is wider space). IlPOPL, pages 284-294. ACM Press, 1996.
than ours; some of the results are applied and inspire our work. In[10] E. HaghverdiA Categorical Approach to Linear Logic,

that study, there is no consideration for finiteness-preserving struc- Geometry of Proofs and Full CompleteneBED thesis,
tural recursion. The finality among locally finite coalgebras is a University of Ottawa, 2000.

kind of corecursion and has a similar problem to that of corecur- [11] M. Hamana. Initial algebra semantics for cyclic sharing
sion; i.e., to assure finiteness-preservation, we have to check local- structures. ITLCA LNCS 5608, pages 127141, 2009.

finiteness of infinite graphs, automation of which seems difficult. [12] M. Hasegawa. The uniformity principle on traced monoidal

The general treatment faredges with iteration operators in the categoriesElectr. Notes Theor. Comput. S69:137-155
current paper was hinted at idf]]. Although there was no con- 2002. ’ ' ' ' '

sideration ofe-edges itself in that study, the author showed that
the trace semantics for some kinds of coalgebra induces iteration
operators by forgetting the length of trace paths; the resulting itera-
tion operators can be regardedzaslimination. The countable list
monad is not treated in that paper; it does not satisfy the assumption

[13] I. Hasuo, 2011. personal communication.

[14] S. Hidaka, K. Asada, Z. Hu, H. Kato, and K. Nakano.
Structural recursion for querying ordered graphddRP
2013, to appearMar. 2013.

of the theorem in that paper. [15] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
In [19], the authors studiectelimination for weighted automata. K. Nakano. Bidirectionalizing graph transformations. In
The kinds of automata treated in their paper are parametrized by ICFP 2010 pages 205-216. ACM Press, 2010.

graphs). Also, their approach to specifying weighted automata Notes Thet_)r. Comput. Sck64(2):125-140, 2010. _
is different from ours. They define first some class of weighted [17] Y. Kakutani. Duality between call-by-name recursion and

e-automata, and then they restrict it to “valid” ones with some pro- call-by-value iteration. Ir€SL, volume 2471 oL NCS pages
cedure; while our graphs are “valid” from the beginning. As a main 506-521. Springer, 2002.
contribution, they give an algorithm for removiagtransitions. It [18] G. M. Kelly. Structures defined by finite limits in the
seems interesting future work to compare their and our general enriched context, ICahiers Topologie Géom. Différentiglle
automaton/graph models and merge each advantages. 23(1):3-42, 1982.

[19] S. Lombardy and J. Sakarovitch. The removal of weighted

e-transitions. Inmplementation and Application of
5. ACKNOWLEDGMENTS Automatavolume 7381 oL NCS pages 345-352. Springer,
We thank Ichiro Hasuo and Kazutaka Matsuda for useful com- 2012.

ments. The research was supported in part by the Grand-ChaIIengin@O] S. Milius. A sound and complete calculus for finite stream

Project on the “Linguistic Foundation for Bidirectional Model circuits. InLICS, pages 421-430. IEEE Computer Society
Transformation” of the National Institute of Informatics and KAK- 2010. ’

ENHI No. 23700047, 22300012, 25240009, and 23220001. [21] R. Milner. Communicating and Mobile Systems: the

m-calculus Cambridge University Press, 1999.
6. REFERENCES [22] J. C. Mitchell.Foundations for programming languages
Foundation of computing series. MIT Press, 1996.

[1] J. Addmek, S. Milius, and J. Velebil. Iterative algebras at [23] E. Moggi. Computational lambda-calculus and monads. In

work. Mathematical. Structures in Comp. Sci.

) LICS pages 14-23. IEEE Computer Society, 1989.
16(6):1085-1131, Dec. 2006. . .) .
2] K (Agada S. Hidaka. H. Kato. Z. Hu. and K. Nakano [24] G. Plotkin and J. Power. Algebraic operations and generic
Parameterized graph transformation languages with monads. effects.Abpplled Categorical Structure&l:ﬁ‘ 9_94(;’ 2003.
Technical Report GRACE-TR-2012-07, GRACE Center, [2°] E. L. Robertson, L. V. Saxton, D. V. Gucht, an
National Institute of Informatics, 2012. S. Vansummeren. Structural recursion as a query language

[3] A. A. Benczur and B. Késa. Static analysis of structural on lists and ordered treeBheory of Computing Systems

recursion in semistructured databases and its consequences. 26] j4é€43t:t569n01?:i3érzsoa(l)?:.oalgebra' a theory of systems
In ADBIS volume 3255 of.NCS pages 189-203. Springer, : .') ’ '
2004. S S pag pring Theoretical Computer Scienc249(1):3 — 80, 2000.
[4] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In [27] |- Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and
In International Summer School on Applied Semantics, K. Nakano. Toward bidirectionalization of ATL with

APPSEM 200ppages 42-122. Springer-Verlag, 2000. (133%0”1%??““: e 1"10'“me 6707 oL NCS pages
[5] M. Bonsangue, J. Rutten, and A. Silva. Algebras for Kripke O SPringer, '

polynomial coalgebras. IbICS, IEEE, Computer Science [28] A. Silva, F. BOT‘C*‘." M. M. Bonsangue, and J. J. M. M.

Press, pages 49-58, 2009. Rutten. Quantitative Kleene coalgebras. Comput,

[6] P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query 209(5)'_822_849’ 2011))
language and algebra for semistructured data based on [29] A. K. Simpson and G. D. Plotkin. Complete axioms for
structural recursioriThe VLDB Journal9(1):76—110, 2000. categorical fixed-point operators. IHCS, pages 30-41.

[7] B.C.d.S. Oliveira and W. R. Cook. Functional IEEE Computer Society, 2000.

programming with structured graphs.IBFP, pages 77—88. [30] A. Sokolova.Coalgebraic Analysis of Probabilistic Systems
ACM Press. 2012. PhD thesis, TU Eindhoven, 2005.

12

APPENDIX

A. FINITARY MONAD EXTENSION FOR
e-ELIMINATION

For a monadl™ with an iteration operatoiter in Setr:, T’ |an
may not have an iteration operator (BS.t|sn = Pan). Still, we
can definez-elimination for finite 7"|s,-graphs so that the result
graph is equal to one obeying DefinitiBh

Let G = (V, B, I) be a finiteT”|an-graph inT’|ﬁn-gf§f. Since
V is finite andT” s, is finitary by definition, there exists a finite
subset’ C £ and a functionB’ such that the following diagram
commutes.

V =L T an (L XVAY) — = T'|an (VA (LXV4Y))
T’ |an (V+(L/ xVAY))
Now V +(L'xV+Y) is afinite set; hencd,’ |an (V+(L xV+Y))
= T'(V+(L' xV+Y)). We can therefore apply the iteration op-
eratoriter to B’; the result is

VB P VYY) = T g (L XV 4Y)
sinceL’'xV+Y is a finite set. Let us definB” as the composition

of

1fFT‘(B)

1% T (L' XVHY) = T'|gn (L XV +Y)
and define-elimg, (G) & (V, B”, 1) in T’ |sn-G- -

Then, for afiniteT’\ﬁn-grath by the inclusiorll” g, < T’,
we can regard also as al”-graph. It can be easily checked
that e-elim(G) in Definition B is exactly equal to the above
e-elimg, (G) regarded as @’-graph.

For a finitary monad” with an extension foe-eliminationT”,
the condition thafl" is finitary can be used to show thatT' — T
can be decomposed into the inclusibfis, C 7" and some (nec-
essarily injective and unique) monad morphistp: T — T”|gn-
Then (T, T’ |¢in, ttin, e-elimga,) becomes a “finitary monad exten-
sion for e-elimination” which is almost a monad extension for
e-elimination except for that-elimg, can performe-elimination
only for finite graphs.

B. STRONG-BISIMULATION GENERIC-
ITY OF STRUCTURAL RECURSION

We give a proof of Lemmd&—the strong-bisimulation generic-
ity of the structural recursion.

We will use the following notions and notations in the proof of
the lemma. We writedR : A; —+ A, for a relationR C A; x As;
e.g., the diagram on the left below means thay.ifR a2, then

J1(a1) S fa(az).

Al LBl X1 L>V1 AT(EGX‘/l-‘rYl)
rt +s st rt +T(LexR+T)
As T) By X9 HI Vs HB T([:EXV2+Y2)

2 2

ForS X1 — X2 andT : Y7 —+ Y5, let us define the relation
~str Gyl —— ng2 for G; € gfy , G1 ~¢5 G if there exists a
relatlonR Vi—+ V2 such that the right diagram above commutes
(i.e., each of the two squares holds). We write simflyfor the
diagonal relation betweel and X, then note thatusy: Gryr ——

Gr¥ is the same ass.

13

PROOF Let G; be (V;, B;, I;). FromG: ~s G2, there exists
R : V1 —+ V4 such that the following diagram commutes.

X v, B reoxvity)
| rt +T(LxRAY)
X — Va - T(LexVa4Y)

2 2

®)

Next, from the assumption that ~5 es, the following diagram
commutes.

T({er,mr)+idy) toT([p,q])
W 2 T(LexVitY) — T(ngXVH‘Y) - ngXV1+Z><Y
R+ T(LxRAY)T T(~gxRAY)T ~sGxrizxy T
Va e T(LexVatY) = T(GigxVa+Y) = G Guvy 1 zxy
T((ez,mr)+idy) toT([p,a])

Then, for the composition of the above, the transpositiol;dfy
oplus yields

xVq
1 >ng><V1+Z><Y

H + ng};+ZxY i-e-x CTVl NinquZxY /2 (6)
1 ngxV
Gl ZXVo+Z XY
2
After that, we can show—see the remark below—that
cycle(Gh) ~ 7y eycle(Gy), ™

and from the left square of the diagraB) (ve get
lidzxI1 | @ cycle(GY) ~s55y lidzxI2] @ cycle(Gh)
i.e.,srec(e1)(G1) ~s srec(ez2)(G2). O

We give a remark on Equatioff){ As seen abovel(Y) =
Gry (and alsaGy) becomes a monad; theaycle becomes an it-
eration operator in the Kleisli category. Furthermore, the iteration
operator is uniform on morphisms that come from the Kleisli cat-
egorySetr via v, if the iteration operator fof" is uniform. The
above derivation of Equatioff) from Equation[6) is just theuni-
formity principleon relations[12]. (Since we need the uniformity
of cycle only on functions, so we need the uniformity dtsr”
only on functions as well.)

	Introduction
	Graph Model and Bisimilarity
	Graph Model of FGT
	Graph Equivalence in FGT: Bisimilarity with -elimination
	Generalization of Bisimilarity with Monad Extension

	Syntax and Semantics of FGT
	Syntax of FGT
	Graph Constructors
	Common Graph Constructors
	T-Algebraic Graph Constructors
	Full Representability of Finite Graphs
	The Need of Monad Extensions for -elimination

	Structural Recursion
	Bisimilarity for Higher Order Functions
	Bisimulation Genericity of Terms of FGT

	Concluding Remark
	Acknowledgments
	References
	Finitary Monad Extension for -elimination
	Strong-bisimulation Genericity of Structural Recursion

